A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density

Anja Rudolph, Peter A. Fasching, Sabine Behrens, Ursula Eilber, Manjeet K. Bolla, Qin Wang, Deborah Thompson, Kamila Czene, Judith S. Brand, Jingmei Li, Christopher Scott, V. Shane Pankratz, Kathleen Brandt, Emily Hallberg, Janet E. Olson, Adam Lee, Matthias W. Beckmann, Arif B. Ekici, Lothar Haeberle, Gertraud MaskarinecLoic Le Marchand, Fredrick Schumacher, Roger L. Milne, Julia A. Knight, Carmel Apicella, Melissa C. Southey, Miroslav K. Kapuscinski, John L. Hopper, Irene L. Andrulis, Graham G. Giles, Christopher A. Haiman, Kay Tee Khaw, Robert Luben, Per Hall, Paul D P Pharoah, Fergus J. Couch, Douglas F. Easton, Isabel dos-Santos-Silva, Celine Vachon, Jenny Chang-Claude

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Introduction: Mammographic density is an established breast cancer risk factor with a strong genetic component and can be increased in women using menopausal hormone therapy (MHT). Here, we aimed to identify genetic variants that may modify the association between MHT use and mammographic density. Methods: The study comprised 6,298 postmenopausal women from the Mayo Mammography Health Study and nine studies included in the Breast Cancer Association Consortium. We selected for evaluation 1327 single nucleotide polymorphisms (SNPs) showing the lowest P-values for interaction (P int) in a meta-analysis of genome-wide gene-environment interaction studies with MHT use on risk of breast cancer, 2541 SNPs in candidate genes (AKR1C4, CYP1A1-CYP1A2, CYP1B1, ESR2, PPARG, PRL, SULT1A1-SULT1A2 and TNF) and ten SNPs (AREG-rs10034692, PRDM6-rs186749, ESR1-rs12665607, ZNF365-rs10995190, 8p11.23-rs7816345, LSP1-rs3817198, IGF1-rs703556, 12q24-rs1265507, TMEM184B-rs7289126, and SGSM3-rs17001868) associated with mammographic density in genome-wide studies. We used multiple linear regression models adjusted for potential confounders to evaluate interactions between SNPs and current use of MHT on mammographic density. Results: No significant interactions were identified after adjustment for multiple testing. The strongest SNP-MHT interaction (unadjusted P int <0.0004) was observed with rs9358531 6.5kb 5' of PRL. Furthermore, three SNPs in PLCG2 that had previously been shown to modify the association of MHT use with breast cancer risk were found to modify also the association of MHT use with mammographic density (unadjusted P int <0.002), but solely among cases (unadjusted P int SNP×MHT×case-status <0.02). Conclusions: The study identified potential interactions on mammographic density between current use of MHT and SNPs near PRL and in PLCG2, which require confirmation. Given the moderate size of the interactions observed, larger studies are needed to identify genetic modifiers of the association of MHT use with mammographic density.

Original languageEnglish (US)
Article number110
JournalBreast Cancer Research
Volume17
Issue number1
DOIs
StatePublished - Aug 16 2015

Bibliographical note

Funding Information:
Names of the approving ethical committees are as follows: ABCFS, The University of Melbourne and The Cancer Councils of Victoria and New South Wales; BBCC, Ethics Committee of the Friedrich-Alexander-University Erlangen-Nuremberg; EPIC: Norwich Local Research Ethics Committee; MCBCS, Mayo Institutional Review Board; MCCS, The Cancer Council Victoria’s Human Research Ethics Committee; MEC, Institutional Review Boards of the University of Hawaii and University of Southern California; MMHS, Mayo Institutional Review Board; OFBCR, Mount Sinai Hospital Research Ethics Board; SASBAC, Regionala Etikprovningsnamnden i Stockholm (Regional Ethical Review Board in Stockholm); SIBS, Eastern Multicentre Research Ethics Committee; BCAC/COGS, this study would not have been possible without the contributions of the following: Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Genetic Epidemiology Laboratory, Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Jacques Simard and Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility. Funding for the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/ A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. ABCFS would like to thank Maggie Angelakos, Judi Maskiell, and Gillian Dite. The ABCFS was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. JLH is a National Health and Medical Research Council (NHMRC) Australia Fellow and a Victorian Breast Cancer Research Consortium Group Leader. MCS is a NHMRC Senior Research Fellow and a Victorian Breast Cancer Research Consortium Group Leader. The work of the BBCC was partly funded by ELAN-Fond of the University Hospital of Erlangen. EPIC-Norfolk was funded by research program grant funding from Cancer Research UK and the Medical Research Council with additional support from the Stroke Association, British Heart Foundation, Department of Health, Research into Ageing and Academy of Medical Sciences. The MCBCS was supported by the NIH grants CA128978, CA116167, CA176785 an NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer [CA116201], and the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. MMHS would like to acknowledge the participants within the Mayo Mammography Health Study, Ms. Fang Fang Wu for her review of all mammograms for the study and the Array Corporation, USA, for the donation of the digitizer that enabled this work. The MMHS work was supported by the National Cancer Institute within the National Institutes of Health (R01 CA128931, R01 CA140286, R01 CA97396, P50 CA116201, R01 CA177150). The Ontario Familial Breast Cancer Registry (OFBCR) was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR. SASBAC thanks the Swedish Medical Research Counsel. SASBAC study was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation. The SIBS study was supported by program grant C1287/A10118 and project grants from Cancer Research UK (grant numbers C1287/8459).

Publisher Copyright:
© 2015 Rudolph et al.

Fingerprint

Dive into the research topics of 'A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density'. Together they form a unique fingerprint.

Cite this