A fast and robust place recognition approach for stereo visual odometry using LIDAR descriptors

Jiawei Mo, Junaed Sattar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Place recognition is a core component of Simultaneous Localization and Mapping (SLAM) algorithms. Particularly in visual SLAM systems, previously-visited places are recognized by measuring the appearance similarity between images representing these locations. However, such approaches are sensitive to visual appearance change and also can be computationally expensive. In this paper, we propose an alternative approach adapting LiDAR descriptors for 3D points obtained from stereo-visual odometry for place recognition. 3D points are potentially more reliable than 2D visual cues (e.g., 2D features) against environmental changes (e.g., variable illumination) and this may benefit visual SLAM systems in long-term deployment scenarios. Stereo-visual odometry generates 3D points with an absolute scale, which enables us to use LiDAR descriptors for place recognition with high computational efficiency. Through extensive evaluations on standard benchmark datasets, we demonstrate the accuracy, efficiency, and robustness of using 3D points for place recognition over 2D methods.

Original languageEnglish (US)
Title of host publication2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5893-5900
Number of pages8
ISBN (Electronic)9781728162126
DOIs
StatePublished - Oct 24 2020
Event2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
Duration: Oct 24 2020Jan 24 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Country/TerritoryUnited States
CityLas Vegas
Period10/24/201/24/21

Bibliographical note

Funding Information:
This work was partially supported by the Minnesota Robotics Institute Seed (MnRI) Grant.

Publisher Copyright:
© 2020 IEEE.

Fingerprint

Dive into the research topics of 'A fast and robust place recognition approach for stereo visual odometry using LIDAR descriptors'. Together they form a unique fingerprint.

Cite this