A kilonova as the electromagnetic counterpart to a gravitational-wave source

S. J. Smartt, T. W. Chen, A. Jerkstrand, M. Coughlin, E. Kankare, S. A. Sim, M. Fraser, C. Inserra, K. Maguire, K. C. Chambers, M. E. Huber, T. Krühler, G. Leloudas, M. Magee, L. J. Shingles, K. W. Smith, D. R. Young, J. Tonry, R. Kotak, A. Gal-YamJ. D. Lyman, D. S. Homan, C. Agliozzo, J. P. Anderson, C. R. Angus, C. Ashall, C. Barbarino, F. E. Bauer, M. Berton, M. T. Botticella, M. Bulla, J. Bulger, G. Cannizzaro, Z. Cano, R. Cartier, A. Cikota, P. Clark, A. De Cia, M. Della Valle, L. Denneau, M. Dennefeld, L. Dessart, G. Dimitriadis, N. Elias-Rosa, R. E. Firth, H. Flewelling, A. Flörs, A. Franckowiak, C. Frohmaier, L. Galbany, S. González-Gaitán, J. Greiner, M. Gromadzki, A. Nicuesa Guelbenzu, C. P. Gutiérrez, A. Hamanowicz, L. Hanlon, J. Harmanen, K. E. Heintz, A. Heinze, M. S. Hernandez, S. T. Hodgkin, I. M. Hook, L. Izzo, P. A. James, P. G. Jonker, W. E. Kerzendorf, S. Klose, Z. Kostrzewa-Rutkowska, M. Kowalski, M. Kromer, H. Kuncarayakti, A. Lawrence, T. B. Lowe, E. A. Magnier, I. Manulis, A. Martin-Carrillo, S. Mattila, O. McBrien, A. Müller, J. Nordin, D. O'Neill, F. Onori, J. T. Palmerio, A. Pastorello, F. Patat, G. Pignata, P. Podsiadlowski, M. L. Pumo, S. J. Prentice, A. Rau, A. Razza, A. Rest, T. Reynolds, R. Roy, A. J. Ruiter, K. A. Rybicki, L. Salmon, P. Schady, A. S.B. Schultz, T. Schweyer, I. R. Seitenzahl, M. Smith, J. Sollerman, B. Stalder, C. W. Stubbs, M. Sullivan, H. Szegedi, F. Taddia, S. Taubenberger, G. Terreran, B. Van Soelen, J. Vos, R. J. Wainscoat, N. A. Walton, C. Waters, H. Weiland, M. Willman, P. Wiseman, D. E. Wright, L. Wyrzykowski, O. Yaron

Research output: Contribution to journalArticlepeer-review

277 Scopus citations


Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lowermass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2-5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

Original languageEnglish (US)
Pages (from-to)75-79
Number of pages5
Issue number7678
StatePublished - Nov 2 2017

Bibliographical note

Funding Information:
Acknowledgements This work is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, as part of ePESSTO (the extended Public ESO Spectroscopic Survey for Transient Objects Survey) ESO programme 199.D-0143 and 099.D-0376. We thank ESO staff for their support at La Silla and Paranal and for making the NACO and VISIR data public to LIGO–Virgo collaborating scientists. We thank J. Ward for permitting a time switch on the NTT. Part of the funding for GROND was generously granted from the Leibniz Prize to G. Hasinger (DFG grant HA 1850/28-1). Pan-STARRS1 and ATLAS are supported by NASA grants NNX08AR22G, NNX12AR65G, NNX14AM74G and NNX12AR55G issued through the SSO Near Earth Object Observations Program. We acknowledge help in obtaining GROND data from A. Hempel, M. Rabus and R. Lachaume on La Silla. The Pan-STARRS1 Surveys were made possible by the IfA, University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society, MPIA Heidelberg and MPE Garching, Johns Hopkins University, Durham University, the University of Edinburgh, Queen’s University Belfast, Harvard-Smithsonian Center for Astrophysics, Las Cumbres Observatory Global Telescope Network Incorporated, National Central University of Taiwan, Space Telescope Science Institute, the National Science Foundation under grant number AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE) and the Los Alamos National Laboratory. We acknowledge EU/FP7-ERC grants 291222 and 615929 and STFC funding through grants ST/P000312/1 and ERF ST/M005348/1. A.J. acknowledges Marie Sklodowska-Curie grant number 702538. M.G., A.H., K.A.R. and Ł.W. acknowledge the Polish NCN grant OPUS 2015/17/B/ST9/03167, J.S. is funded by the Knut and Alice Wallenberg Foundation. C.B., M.D.V., N.E.-R., A.P. and G.T. are supported by the PRIN-INAF 2014. M.C. is supported by the David and Ellen Lee Prize Postdoctoral Fellowship at the California Institute of Technology. M.F. is supported by a Royal Society Science Foundation Ireland University Research Fellowship. M.S. and C.I. acknowledge support from EU/FP7-ERC grant number 615929. P.G.J. acknowledges the ERC consolidator grant number 647208. GREAT is funded by V.R. J.D.L. acknowledges STFC grant ST/P000495/1. T.W.C., P.S. and P.W. acknowledge support through the Alexander von Humboldt Sofja Kovalevskaja Award. J.H. acknowledges financial support from the Vilho, Yrjö and Kalle Väisälä Foundation. J.V. acknowledges FONDECYT grant number 3160504. L.G. was supported in part by the US National Science Foundation under grant AST-1311862. MB acknowledges support from the Swedish Research Council and the Swedish Space Board. A.G.-Y. is supported by the EU via ERC grant number 725161, the Quantum Universe I-Core programme, the ISF, the BSF and by a Kimmel award. L.S. acknowledges IRC grant GOIPG/2017/1525. A.J.R. is supported by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) through project number CE110001020. I.R.S. was supported by the Australian Research Council grant FT160100028. We acknowledge Millennium Science Initiative grant IC120009. This paper uses observations obtained at the Boyden Observatory, University of the Free State, South Africa.

Fingerprint Dive into the research topics of 'A kilonova as the electromagnetic counterpart to a gravitational-wave source'. Together they form a unique fingerprint.

Cite this