A new EC-PC threshold estimation method for in vivo neural spike detection

Zhi Yang, Wentai Liu, Mohammad Reza Keshtkaran, Yin Zhou, Jian Xu, Victor Pikov, Cuntai Guan, Yong Lian

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

This paper models in vivo neural signals and noise for extracellular spike detection. Although the recorded data approximately follow Gaussian distribution, they clearly deviate from white Gaussian noise due to neuronal synchronization and sparse distribution of spike energy. Our study predicts the coexistence of two components embedded in neural data dynamics, one in the exponential form (noise) and the other in the power form (neural spikes). The prediction of the two components has been confirmed in experiments of in vivo sequences recorded from the hippocampus, cortex surface, and spinal cord; both acute and long-term recordings; and sleep and awake states. These two components are further used as references for threshold estimation. Different from the conventional wisdom of setting a threshold at 3xRMS, the estimated threshold exhibits a significant variation. When our algorithm was tested on synthesized sequences with a different signal to noise ratio and on/off firing dynamics, inferred threshold statistics track the benchmarks well. We envision that this work may be applied to a wide range of experiments as a front-end data analysis tool.

Original languageEnglish (US)
Article number046017
JournalJournal of neural engineering
Volume9
Issue number4
DOIs
StatePublished - Aug 2012

Fingerprint Dive into the research topics of 'A new EC-PC threshold estimation method for in vivo neural spike detection'. Together they form a unique fingerprint.

Cite this