A new virtual–pulse time integral methodology for linear transient heat transfer problems

X. Chen, Kumar K. Tamma, D. Sha

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The present article introduces a new and effective virtual–pulse (VIP) time integral methodology of computation for linear transient heat transfer analysis and serves to lay down the theoretical basis for subsequent applications to general heat transfer problems. For expository purposes, attention is purposely restricted to linear models. For this class of problems, the proposed methodology is explicit, unconditionally stable, and possesses second–order accuracy for a general heat loading situation. Unlike past approaches and ongoing practices, the methodology offers several computationally attractive yet accurate features, and, promises to be an attractive alternative for heat transfer analysts.

Original languageEnglish (US)
Pages (from-to)301-314
Number of pages14
JournalNumerical Heat Transfer, Part B: Fundamentals
Volume24
Issue number3
DOIs
StatePublished - 1993

Bibliographical note

Funding Information:
This research was supported, in part, by NASA-JSC and Lockhead Engineering and Sciences Co., Houston, Texas. Support in part by the Army Research Office with the University of Minnesota Army High Performance Computing Research Center (AHPCRC), Minneapolis, Minnesota, is also greatly

Fingerprint

Dive into the research topics of 'A new virtual–pulse time integral methodology for linear transient heat transfer problems'. Together they form a unique fingerprint.

Cite this