A novel cancer syndrome caused by KCNQ1-deficiency in the golden Syrian hamster

Rong Li, Jinxin Miao, Alexandru Flaviu Tabaran, Gerard O'Sullivan, Kyle Anderson, Patricia M Scott, Zhongde Wang, Robert T Cormier

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

BACKGROUND: The golden Syrian hamster is an emerging model organism. To optimize its use, our group has made the first genetically engineered hamsters. One of the first genes that we investigated is KCNQ1 which encodes for the KCNQ1 potassium channel and also has been implicated as a tumor suppressor gene. MATERIALS AND METHODS: We generated KCNQ1 knockout (KO) hamsters by CRISPR/Cas9-mediated gene targeting and investigated the effects of KCNQ1-deficiency on tumorigenesis. RESULTS: By 70 days of age seven of the eight homozygous KCNQ1 KOs used in this study began showing signs of distress, and on necropsy six of the seven ill hamsters had visible cancers, including T-cell lymphomas, plasma cell tumors, hemangiosarcomas, and suspect myeloid leukemias. CONCLUSIONS: None of the hamsters in our colony that were wild-type or heterozygous for KCNQ1 mutations developed cancers indicating that the cancer phenotype is linked to KCNQ1-deficiency. This study is also the first evidence linking KCNQ1-deficiency to blood cancers.

Original languageEnglish (US)
Article number6
JournalJournal of Carcinogenesis
Volume17
Issue number1
DOIs
StatePublished - 2018

Bibliographical note

Funding Information:
This work was supported by a grant from the University of Minnesota Medical School (to RTC); by Essentia Health Systems (to RTC); and grants from the Utah Science Technology and Research initiative and NIH (1R41OD021979‑01) (to ZW).

Publisher Copyright:
© 2018 Journal of Carcinogenesis.

Keywords

  • Golden Syrian hamster
  • KCNQ1
  • tumor suppressor

Fingerprint

Dive into the research topics of 'A novel cancer syndrome caused by KCNQ1-deficiency in the golden Syrian hamster'. Together they form a unique fingerprint.

Cite this