A simple yet efficient accuracy configurable adder design

Wenbin Xu, Sachin S. Sapatnekar, Jiang Hu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Approximate computing is a promising approach for low power IC design and has recently received considerable research attention. To accommodate dynamic levels of approximation, a few accuracy configurable adder designs have been developed in the past. However, these designs tend to incur large area overheads as they rely on either redundant computing or complicated carry prediction. Some of these designs include error detection and correction circuitry, which further increases area. In this work, we investigate a simple accuracy configurable adder design that contains no redundancy or error detection/correction circuitry and uses very simple carry prediction. Simulation results show that our design dominates the latest previous work on accuracy-delay-power tradeoff while using 39% lower area. Moreover, we propose a delay-adaptive self-configuration technique to further improve accuracy-delay-power tradeoff.

Original languageEnglish (US)
Title of host publicationISLPED 2017 - IEEE/ACM International Symposium on Low Power Electronics and Design
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509060238
DOIs
StatePublished - Aug 11 2017
Event22nd IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2017 - Taipei, Taiwan, Province of China
Duration: Jul 24 2017Jul 26 2017

Publication series

NameProceedings of the International Symposium on Low Power Electronics and Design
ISSN (Print)1533-4678

Other

Other22nd IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2017
Country/TerritoryTaiwan, Province of China
CityTaipei
Period7/24/177/26/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of 'A simple yet efficient accuracy configurable adder design'. Together they form a unique fingerprint.

Cite this