A Time-Based Intra-Memory Computing Graph Processor Featuring A* Wavefront Expansion and 2-D Gradient Control

Research output: Contribution to journalArticlepeer-review

Abstract

A mixed-signal, time-based 65-nm application-specific integrated circuit is developed for solving shortest-path problems. Digital circuits are collocated with the memory as intra-memory computing. The core follows similar principles from wave routing and, additionally, incorporates a gradient on the periphery of the core to implement the A* algorithm predicted distance heuristic. A leading pulse is propagated from start nodes and is asynchronously latched in neighboring vertex cells and pushed to its four neighbors. Applications include collision avoidance for self-driving cars, shortest path planning, and scientific computing, and are shown to be scalable across many cores. The chip achieves 559 million traversed edges per second at 105x improved energy efficiency compared with existing platforms such as field-programmable gate array and CPU. The processor operates nominally at 1.79 ns per node with peak power consumption of 26.4 mW.

Original languageEnglish (US)
JournalIEEE Journal of Solid-State Circuits
DOIs
StateAccepted/In press - 2021

Bibliographical note

Publisher Copyright:
IEEE

Keywords

  • A* algorithm
  • Art
  • Field programmable gate arrays
  • Latches
  • Partitioning algorithms
  • Pipelines
  • Random access memory
  • Routing
  • graph computing
  • graphs
  • intra-memory computing
  • single-source shortest path (SSSP)
  • time-domain computing
  • time-to-digital converter.

Fingerprint Dive into the research topics of 'A Time-Based Intra-Memory Computing Graph Processor Featuring A* Wavefront Expansion and 2-D Gradient Control'. Together they form a unique fingerprint.

Cite this