Accelerated maturation in functional connectivity following early life stress: Circuit specific or broadly distributed?

Max P. Herzberg, Kelly Jedd McKenzie, Amanda S. Hodel, Ruskin H. Hunt, Bryon A. Mueller, Megan R. Gunnar, Kathleen M. Thomas

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Psychosocial acceleration theory and other frameworks adapted from life history predict a link between early life stress and accelerated maturation in several physiological systems. Those findings led researchers to suggest that the emotion-regulatory brain circuits of previously-institutionalized (PI) youth are more mature than youth raised in their biological families (non-adopted, or NA, youth) during emotion tasks. Whether this accelerated maturation is evident during resting-state fMRI has not yet been established. Resting-state fMRI data from 83 early adolescents (Mage = 12.9 years, SD = 0.57 years) including 41 PI and 42 NA youth, were used to examine seed-based functional connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC). Additional whole-brain analyses assessed group differences in functional connectivity and associations with cognitive performance and behavior. We found group differences in amygdala – vmPFC connectivity that may be consistent with accelerated maturation following early life stress. Further, whole-brain connectivity analyses revealed group differences associated with internalizing and externalizing symptoms. However, the majority of whole-brain results were not consistent with an accelerated maturation framework. Our results suggest early life stress in the form of institutional care is associated with circuit-specific alterations to a frontolimbic emotion-regulatory system, while revealing limited differences in more broadly distributed networks.

Original languageEnglish (US)
Article number100922
JournalDevelopmental Cognitive Neuroscience
Volume48
DOIs
StatePublished - Apr 2021

Bibliographical note

Publisher Copyright:
© 2021

Keywords

  • Early life stress
  • Graph theory
  • Institutional care
  • Resting-state fMRI

Fingerprint

Dive into the research topics of 'Accelerated maturation in functional connectivity following early life stress: Circuit specific or broadly distributed?'. Together they form a unique fingerprint.

Cite this