Achieving dexterous manipulation for minimally invasive surgical robots through the use of hydraulics

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Existing robotic surgical platforms face limitations which include the balance between the scale of the robot and its capability in terms of range of motion, load capacity, and tool manipulation. These limitations can be overcome by taking advantage of fluid power as an enabling technology with its inherent power density and controllability. As a proof-of-concept for this approach, we are pursuing the design of a novel, dexterous robotic surgical tool targeted towards transgastric natural orifice surgery. The design for this hydraulic surgical platform and the corresponding analysis are presented to demonstrate the theoretical system performance in terms of tool positioning and input requirements. The design involves a combination of a novel 3D valve, hydraulic artificial muscles, and multi-segmented flexible manipulator arms that fit in the lumen of an endoscope. A dynamic model of the system is created. Numerical simulations show that a hydraulic endoscopic surgical robot can produce the desired performance without using large external manipulators such as those employed by conventional surgical robots. They also provide insight into the component interactions and input response of the system. Future work will include manufacturing a prototype to validate the concept and the numerical models.

Original languageEnglish (US)
Title of host publicationASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Pages429-438
Number of pages10
DOIs
StatePublished - 2012
EventASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 - Fort Lauderdale, FL, United States
Duration: Oct 17 2012Oct 19 2012

Publication series

NameASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Volume3

Other

OtherASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Country/TerritoryUnited States
CityFort Lauderdale, FL
Period10/17/1210/19/12

Fingerprint

Dive into the research topics of 'Achieving dexterous manipulation for minimally invasive surgical robots through the use of hydraulics'. Together they form a unique fingerprint.

Cite this