Active control of acoustic reflection, absorption, and transmission using thin panel speakers

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

This paper explores the development of thin panels that can be controlled electronically so as to provide surfaces with desired reflection coefficients. Such panels can be used as either perfect reflectors or absorbers. They can also be designed to be transmission blockers that block the propagation of sound. The development of the control system is based on the use of wave separation algorithms that separate incident sound from reflected sound. In order to obtain a desired reflection coefficient, the reflected sound is controlled to appropriate levels. The incident sound is used as an acoustic reference for feedforward control and has the important property of being isolated from the action of the control system speaker. In order to use a panel as a transmission blocker, the acoustic pressure behind the panel is driven to zero. The use of the incident signal as a reference again plays a key role in successfully reducing broadband transmission of sound. The panels themselves are constructed using poster board and small rare-earth actuators. Detailed experimental results are presented showing the efficacy of the algorithms in achieving real-time control of reflection or transmission. The panels are able to effectively block transmission of broadband sound. Practical applications for these panels include enclosures for noisy machinery, noise-absorbing wallpaper, the development of sound walls, and the development of noise-blocking glass windows.

Original languageEnglish (US)
Pages (from-to)852-870
Number of pages19
JournalJournal of the Acoustical Society of America
Volume113
Issue number2
DOIs
StatePublished - Feb 1 2003

Bibliographical note

Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.

Fingerprint Dive into the research topics of 'Active control of acoustic reflection, absorption, and transmission using thin panel speakers'. Together they form a unique fingerprint.

Cite this