Am i a Baller? Basketball Performance Assessment from First-Person Videos

Gedas Bertasius, Hyun Soo Park, Stella X. Yu, Jianbo Shi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

This paper presents a method to assess a basketball player's performance from his/her first-person video. A key challenge lies in the fact that the evaluation metric is highly subjective and specific to a particular evaluator. We leverage the first-person camera to address this challenge. The spatiotemporal visual semantics provided by a first-person view allows us to reason about the camera wearer's actions while he/she is participating in an unscripted basketball game. Our method takes a player's first-person video and provides a player's performance measure that is specific to an evaluator's preference. To achieve this goal, we first use a convolutional LSTM network to detect atomic basketball events from first-person videos. Our network's ability to zoom-in to the salient regions addresses the issue of a severe camera wearer's head movement in first-person videos. The detected atomic events are then passed through the Gaussian mixtures to construct a highly non-linear visual spatiotemporal basketball assessment feature. Finally, we use this feature to learn a basketball assessment model from pairs of labeled first-person basketball videos, for which a basketball expert indicates, which of the two players is better. We demonstrate that despite not knowing the basketball evaluator's criterion, our model learns to accurately assess the players in real-world games. Furthermore, our model can also discover basketball events that contribute positively and negatively to a player's performance.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2196-2204
Number of pages9
ISBN (Electronic)9781538610329
DOIs
StatePublished - Dec 22 2017
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: Oct 22 2017Oct 29 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Other

Other16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period10/22/1710/29/17

Fingerprint

Dive into the research topics of 'Am i a Baller? Basketball Performance Assessment from First-Person Videos'. Together they form a unique fingerprint.

Cite this