AMP activated protein kinase-α2 regulates expression of estrogen-related receptor-α, a metabolic transcription factor related to heart failure development

Xinli Hu, Xin Xu, Zhongbing Lu, Ping Zhang, John Fassett, Ying Zhang, Yi Xin, Jennifer L. Hall, Benoit Viollet, Robert J. Bache, Yimin Huang, Yingjie Chen

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

The normal expression of myocardial mitochondrial enzymes is essential to maintain the cardiac energy reserve and facilitate responses to stress, but the molecular mechanisms to maintain myocardial mitochondrial enzyme expression have been elusive. Here we report that congestive heart failure is associated with a significant decrease of myocardial estrogen-related receptor-α (ERRα), but not peroxisome proliferator-activated receptor-γ coactivator 1α, in human heart failure samples. In addition, chronic pressure overload in mice caused a decrease of ERRα expression that was significantly correlated to the degree of left ventricular dysfunction, pulmonary congestion, and decreases of a group of myocardial energy metabolism-related genes. We found that the metabolic sensor AMP activated protein kinase (AMPK) regulates ERRα expression in vivo and in vitro. AMPKα2 knockout decreased myocardial ERRα (both mRNA and protein) and its downstream targets under basal conditions, with no change in myocardial peroxisome proliferator-activated receptor-γ coactivator 1α expression. Using cultured rat neonatal cardiac myocytes, we found that overexpression of constitutively active AMPKα significantly induced ERRα mRNA, protein, and promoter activity. Conversely, selective gene silencing of AMPKα2 repressed ERRα and its target gene levels, indicating that AMPKα2 is involved in the regulation of ERRα expression. In addition, overexpression of ERRα in AMPKα2 knockout neonatal cardiac myocytes partially rescued the repressed expression of some energy metabolism-related genes. These data support an important role for AMPKα2 in regulating the expression of myocardial ERRα and its downstream mitochondrial enzymes.

Original languageEnglish (US)
Pages (from-to)696-703
Number of pages8
JournalHypertension
Volume58
Issue number4
DOIs
StatePublished - Oct 2011

Keywords

  • AMP activated protein kinase
  • estrogen-related receptor
  • gene regulation
  • heart failure
  • βenergy metabolism

Fingerprint

Dive into the research topics of 'AMP activated protein kinase-α2 regulates expression of estrogen-related receptor-α, a metabolic transcription factor related to heart failure development'. Together they form a unique fingerprint.

Cite this