An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery

David E. Shean, Oleg Alexandrov, Zachary M. Moratto, Benjamin E. Smith, Ian R. Joughin, Claire Porter, Paul Morin

Research output: Contribution to journalArticlepeer-review

218 Scopus citations

Abstract

We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ~0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ~2 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5 m where appropriate ground-control data are available, with observed standard deviation of ~0.1-0.5 m for overlapping, co-registered DEMs (n = 14,. 17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.

Original languageEnglish (US)
Pages (from-to)101-117
Number of pages17
JournalISPRS Journal of Photogrammetry and Remote Sensing
Volume116
DOIs
StatePublished - Jun 1 2016

Bibliographical note

Funding Information:
We gratefully acknowledge funding from the NASA Cryosphere program for ASP development. D. Shean was supported by a NASA NESSF fellowship ( NNX12AN36H ). B. Smith ( NNX09AE47G ) and I. Joughin ( NNX08AL98A ) acknowledge support from NASA. Support for the Polar Geospatial Center was provided by the National Science Foundation ( ANT-1043681 ). We would like to thank Milan Karspeck and Chris Comp at DigitalGlobe for initial guidance on L1B corrections. Comments from two anonymous reviewers helped improve the manuscript. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center .

Publisher Copyright:
© 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

Keywords

  • Cryosphere
  • Ice sheet
  • Photogrammetry
  • Stereo reconstruction
  • Topography
  • WorldView

Fingerprint Dive into the research topics of 'An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery'. Together they form a unique fingerprint.

Cite this