An efficient algebraic solution to the perspective-three-point problem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

28 Scopus citations

Abstract

In this work, we present an algebraic solution to the classical perspective-3-point (P3P) problem for determining the position and attitude of a camera from observations of three known reference points. In contrast to previous approaches, we first directly determine the camera's attitude by employing the corresponding geometric constraints to formulate a system of trigonometric equations. This is then efficiently solved, following an algebraic approach, to determine the unknown rotation matrix and subsequently the camera's position. As compared to recent alternatives, our method avoids computing unnecessary (and potentially numerically unstable) intermediate results, and thus achieves higher numerical accuracy and robustness at a lower computational cost. These benefits are validated through extensive Monte-Carlo simulations for both nominal and closeto-singular geometric configurations.

Original languageEnglish (US)
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4618-4626
Number of pages9
ISBN (Electronic)9781538604571
DOIs
StatePublished - Nov 6 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
CountryUnited States
CityHonolulu
Period7/21/177/26/17

Bibliographical note

Funding Information:
This work was supported by the National Science Foundation (IIS-1328722).

Fingerprint Dive into the research topics of 'An efficient algebraic solution to the perspective-three-point problem'. Together they form a unique fingerprint.

Cite this