Analysis of sandwich panels for an energy efficient and self-supporting residential roof

Daniel Thomas, Susan C. Mantell, Jane H. Davidson, Louise F. Goldberg, John Carmody

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations


The structural and thermal feasibility of a self-supporting sandwich panel for energy efficient residential roof applications is assessed. The assessment is limited to symmetric sandwich panels comprising two face sheets and an insulating core. Feasible panel designs are presented for loading conditions, corresponding to southern and northern climates in the United States. The base case panel is 5.5 m long for a nominal 4.6 m horizontal span and an 8/12 roof pitch. Face sheet materials considered are oriented strand board, steel, and fiber reinforced plastic. Core materials considered are expanded polystyrene, extruded polystyrene, polyurethane and poly(vinyl-chloride) foams. A wide range of material options meet building code limits on deflection and weight and prevent face sheet fracture and buckling, and core shear failure. Panels are identified that have structural depths similar to conventional wood rafter construction. Shortening the overall panel length provides greater choice in the use of materials and decreases the required panel thickness. Suggestions for improved panel designs address uncertainty in the ability of the plastic core to withstand long term loading over the expected life of residential buildings.

Original languageEnglish (US)
Pages (from-to)1-14
Number of pages14
JournalInternational Solar Energy Conference
StatePublished - 2005
EventSolar Engineering 2005 - Orlando, FL, United States
Duration: Aug 2 2005Aug 6 2005

Fingerprint Dive into the research topics of 'Analysis of sandwich panels for an energy efficient and self-supporting residential roof'. Together they form a unique fingerprint.

Cite this