Ancient record of changing flows from wave ripple defects

J. Taylor Perron, Paul M. Myrow, Kimberly L. Huppert, Abigail R. Koss, Andrew D. Wickert

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Symmetric sand ripples formed by water waves are common features on modern coasts and in sedimentary rocks. The size and spacing of wave ripples generally scale with water depth and wave conditions, and are widely used to reconstruct coastal environments of the geologic past. Interpretations based on average ripple dimensions and assumed constant wave conditions are informative, but many rippled beds contain striking patterns involving defects-deviations from straight, evenly spaced ripple crests-that suggest more dynamic flow regimes. We report a set of laboratory experiments that reveal how these patterns form in rippled beds adjusting to a change in wave conditions. As the ripples in our experiments evolved toward a new spacing, they developed defects that are widely observed in modern environments and in the rock record. The dominant defect type depends on the sign and magnitude of the adjustment in ripple spacing and the number of wave periods since the change in wave conditions. A regime diagram summarizing these associations quantitatively links ripple defects to transient flow conditions. Our experiments reveal the origin of previously unexplained ripple patterns and add a new dimension to paleoenvironmental interpretations.

Original languageEnglish (US)
Pages (from-to)875-878
Number of pages4
Issue number10
StatePublished - Oct 1 2018

Bibliographical note

Funding Information:
We thank Michael Szulczewski, Jocelyn Fuentes, Justin Kao, Mathieu Lapôtre, Tristan White, and Tom Ashley for assistance with experiments; John Southard for advice; Ryan Ewing and Nigel Goldenfeld for their suggestions; and Paul Hoffman and Zoltán Sylvester for granting us permission to use their photographs. Reviews by Jeremy Venditti, Mauricio Perillo, and an anonymous reviewer helped us improve the paper. This study was supported by the U.S. National Science Foundation through award EAR-1225865 to Perron and award EAR-1225879 to Myrow.

Publisher Copyright:
© 2018 Geological Society of America.

Fingerprint Dive into the research topics of 'Ancient record of changing flows from wave ripple defects'. Together they form a unique fingerprint.

Cite this