Anthropocene geochemistry of metals in sediment cores from the Laurentian Great Lakes

Meagan N. Aliff, Euan D. Reavie, Sara P. Post, Lawrence M. Zanko

Research output: Contribution to journalArticlepeer-review

Abstract

Geochemical analyses applied to lake sedimentary records can reveal the history of pollution by metals and the effects of remedial efforts. Lakes provide ideal environments for geochemical studies because they have steady deposition of fine grained material suitable for fixation of pollutants. The Laurentian Great Lakes are the most studied system in this field, and they have well-preserved chronological profiles. To date, this important system has been considered in parts for inorganic geochemistry, hampering basin-wide conclusions regarding metal contamination. We filled spatial and temporal gaps in a comprehensive geochemical analysis of 11 sediment cores collected from all five Great Lakes. Hierarchical cluster analysis of all Great Lakes samples divided the metal analytes into five functional groups: (1) carbonate elements; (2) metals and oxides with diverse natural sources, including a subgroup of analytes known to be anthropogenically enriched (Cd, Pb, Sn, Zn, and Sb); (3) common crustal elements; (4) metals related to coal and nuclear power generation; and (5) all of the co-occurring rare earth elements. Two contamination indices (Igeo and EF) applied to sedimentary metals indicated that Na, Co, Mn, Cd, Pb, Ta, and Cu were each, at some point during the Anthropocene, the most enriched metal pollutants in Great Lakes sediments. Land uses correlated with the metal analytes, such as increases in contaminant metals with the rise in catchment population and increases in carbonate elements (e.g. Ca) with agriculture. Certain contamination trends were observed basin-wide, such as for the atmospheric pollutant Pb, which followed a rise associated with fossil fuel combustion and a decline following the ban of leaded gasoline. Other trends were lake-specific, such as recent high concentrations of Na in Lake Superior, likely due to road salt applications, and a late-20th-century peak in Ca associated with algal whiting events in Lake Ontario. Some metals exceeded guidelines for sediment quality, in some cases prior to European settlement of the basin, indicating that a paleolimnological context is important for appropriate management of sediment contamination. The Great Lakes are sensitive to environmental changes such as pollution by metals, and it is clear that while there has been remedial success, results from the uppermost intervals of cores indicate ongoing problems.

Original languageEnglish (US)
Article numbere9034
JournalPeerJ
Volume2020
Issue number3
DOIs
StatePublished - 2020
Externally publishedYes

Bibliographical note

Funding Information:
This document has not been subjected to the EPA’s required peer and policy review and therefore does not necessarily reflect the view of the Agency, and no official endorsement should be inferred. We thank Kathleen Kennedy, Amy Kireta, Robert Sterner, Craig Stow and the Research Vessel Lake Guardian and Blue Heron field crews for their help collecting core samples. Sediment dating was supported by Daniel Engstrom and personnel at the St. Croix Watershed Research Station. James Latimer and two anonymous reviewers provided valuable comments on this manuscript.

Keywords

  • Geochemistry
  • Great Lakes
  • Metal pollution
  • Paleolimnology
  • Sediment cores

PubMed: MeSH publication types

  • Journal Article

Fingerprint Dive into the research topics of 'Anthropocene geochemistry of metals in sediment cores from the Laurentian Great Lakes'. Together they form a unique fingerprint.

Cite this