Astro2020 science white paper inflation and dark energy from spectroscopy at z > 2

Simone Ferraro, Michael J. Wilson, Muntazir Abidi, David Alonso, Behzad Ansarinejad, Robert Armstrong, Jacobo Asorey, Arturo Avelino, Carlo Baccigalupi, Kevin Bandura, Nicholas Battaglia, Chetan Bavdhankar, José Luis Bernal, Florian Beutler, Matteo Biagetti, Guillermo A. Blanc, Jonathan Blazek, Adam S. Bolton, Julian Borrill, Brenda FryeElizabeth Buckley-Geer, Philip Bull, Cliff Burgess, Christian T. Byrnes, Zheng Cai, Francisco J. Castander, Emanuele Castorina, Tzu Ching Chang, Jonás Chaves-Montero, Shi Fan Chen, Xingang Chen, Christophe Balland, Christophe Yèche, J. D. Cohn, William Coulton, Helene Courtois, Rupert A.C. Croft, Francis Yan Cyr-Racine, Guido D'Amico, Kyle Dawson, Jacques Delabrouille, Arjun Dey, Olivier Doré, Kelly A. Douglass, Duan Yutong, Cora Dvorkin, Alexander Eggemeier, Daniel Eisenstein, Xiaohui Fan, Pedro G. Ferreira, Andreu Font-Ribera, Simon Foreman, Juan García-Bellido, Martina Gerbino, Vera Gluscevic, Satya Gontcho A. Gontcho, Daniel Green, Julien Guy, Chang Hoon Hahn, Shaul Hanany, Will Handley, Nimish Hathi, Adam J. Hawken, César Hernández-Aguayo, Renée Hložek, Dragan Huterer, Mustapha Ishak, Marc Kamionkowski, Dionysios Karagiannis, Ryan E. Keeley, Robert Kehoe, Rishi Khatri, Alex Kim, Jean Paul Kneib, Juna A. Kollmeier, Ely D. Kovetz, Elisabeth Krause, Alex Krolewski, Benjamin L'Huillier, Martin Landriau, Michael Levi, Michele Liguori, Eric Linder, Zarija Lukić, Axel de la Macorra, Andrés A. Plazas, Jennifer L. Marshall, Paul Martini, Kiyoshi Masui, Patrick McDonald, P. Daniel Meerburg, Joel Meyers, Mehrdad Mirbabayi, John Moustakas, Adam D. Myers, Nathalie Palanque-Delabrouille, Laura Newburgh, Jeffrey A. Newman, Gustavo Niz, Hamsa Padmanabhan, Povilas Palunas, Will J. Percival, Francesco Piacentini, Matthew M. Pieri, Anthony L. Piro, Abhishek Prakash, Jason Rhodes, Ashley J. Ross, Graziano Rossi, Gwen C. Rudie, Lado Samushia, Misao Sasaki, Emmanuel Schaan, David J. Schlegel, Marcel Schmittfull, Michael Schubnell, Neelima Sehgal, Leonardo Senatore, Hee Jong Seo, Arman Shafieloo, Huanyuan Shan, Joshua D. Simon, Sara Simon, Zachary Slepian, Anže Slosar, Srivatsan Sridhar, Albert Stebbins, Stephanie Escoffier, Eric R. Switzer, Gregory Tarlé, Mark Trodden, Cora Uhlemann, L. Arturo Urenña-López, Eleonora Di Valentino, M. Vargas-Magaña, Yi Wang, Scott Watson, Martin White, Weishuang Xu, Byeonghee Yu, Gong Bo Zhao, Yi Zheng, Hong Ming Zhu

Research output: Contribution to journalArticlepeer-review

Abstract

The expansion of the Universe is understood to have accelerated during two epochs: in its very first moments during a period of 'Inflation' and much more recently, at z < 1, when Dark Energy is hypothesized to drive cosmic acceleration. The undiscovered mechanisms behind these two epochs represent some of the most important open problems in fundamental physics. Most of the processes involved during Inflation impact observations on the very largest spatial scales [1, 2]. Traditionally, these have been accessed through observations of the Cosmic Microwave Background (CMB). While very powerful, the CMB originates from a 2D surface and the finite number of modes that it contains will largely be measured by experiments over the next decade.1 Observations of large 3D volumes with large-scale structure (LSS) access similar scales and will dramatically increase the number of available modes. For example, LSS observations in the range 2. z. 5 can more than triple the volume surveyed at z. 2, and, together with the sufficiently high galaxy number in this interval, strongly motivates a future spectroscopic survey that exploits this opportunity. In addition, tomography allows mapping the growth of structure with redshift, which provides robust constraints on Dark Energy and neutrino masses while relaxing restrictive assumptions such as a power-law primordial power spectrum [7]. Finally, cross-correlation with external tracers, such as CMB lensing, Intensity Mapping or the Lyman-α forest, immunises the constraints to the systematics that make measurement challenging and further improves the precision through 'sample variance cancellation' [8, 9, 10] and degeneracy breaking.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Mar 21 2019

Fingerprint Dive into the research topics of 'Astro2020 science white paper inflation and dark energy from spectroscopy at z > 2'. Together they form a unique fingerprint.

Cite this