AtCCX3 is an arabidopsis endomembrane H+-dependent K+ transporter

Jay Morris, Hui Tian, Sunghun Park, Coimbatore S. Sreevidya, John M. Ward, Kendal D. Hirschi

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

The Arabidopsis (Arabidopsis thaliana) cation calcium exchangers (CCXs) were recently identified as a subfamily of cation transporters; however, no plant CCXs have been functionally characterized. Here, we show that Arabidopsis AtCCX3 (At3g14070) and AtCCX4 (At1g54115) can suppress yeast mutants defective in Na+, K+, and Mn2+ transport. We also report high-capacity uptake of 86Rb+ in tonoplast-enriched vesicles from yeast expressing AtCCX3. Cation competition studies showed inhibition of 86Rb+ uptake in AtCCX3 cells by excess Na+, K+, and Mn2+. Functional epitope-tagged AtCCX3 fusion proteins were localized to endomembranes in plants and yeast. In Arabidopsis, AtCCX3 is primarily expressed in flowers, while AtCCX4 is expressed throughout the plant. Quantitative polymerase chain reaction showed that expression of AtCCX3 increased in plants treated with NaCl, KCl, and MnCl 2. Insertional mutant lines of AtCCX3 and AtCCX4 displayed no apparent growth defects; however, overexpression of AtCCX3 caused increased Na+ accumulation and increased 86Rb+ transport. Uptake of 86Rb+ increased in tonoplast-enriched membranes isolated from Arabidopsis lines expressing CCX3 driven by the cauliflower mosaic virus 35S promoter. Overexpression of AtCCX3 in tobacco (Nicotiana tabacum) produced lesions in the leaves, stunted growth, and resulted in the accumulation of higher levels of numerous cations. In summary, these findings suggest that AtCCX3 is an endomembrane-localized H+-dependent K + transporter with apparent Na+ and Mn2+ transport properties distinct from those of previously characterized plant transporters.

Original languageEnglish (US)
Pages (from-to)1474-1486
Number of pages13
JournalPlant physiology
Volume148
Issue number3
DOIs
StatePublished - Nov 2008

Fingerprint

Dive into the research topics of 'AtCCX3 is an arabidopsis endomembrane H+-dependent K+ transporter'. Together they form a unique fingerprint.

Cite this