Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs

N. V. Mekhileri, K. S. Lim, G. C.J. Brown, I. Mutreja, B. S. Schon, G. J. Hooper, T. B.F. Woodfield

Research output: Contribution to journalArticlepeer-review

134 Scopus citations

Abstract

Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ±5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was observed. Bioassembly of pre-differentiated micro-tissues as well as chondrocyte-laden hydrogel micro-spheres demonstrated the flexibility of the platform while supporting tissue fusion, long-term cell viability, and deposition of cartilage-specific extracellular matrix proteins. This technology provides an automated and scalable pathway for bioassembly of both simple and complex 3D tissue constructs of clinically relevant shape and size, with demonstrated capability to facilitate direct spatial organisation and hierarchical 3D assembly of micro-tissue modules, ranging from biomaterial free cell pellets to cell-laden hydrogel formulations.

Original languageEnglish (US)
Article number024103
JournalBiofabrication
Volume10
Issue number2
DOIs
StatePublished - Jan 12 2018
Externally publishedYes

Bibliographical note

Funding Information:
We acknowledge funding from the Royal Society of New Zealand Rutherford Discovery Fellowship (TW, RDF-UOO1204) and the AO Foundation (S-08-81W).

Publisher Copyright:
© 2018 IOP Publishing Ltd.

Keywords

  • automated
  • bioassembly
  • bottom-up
  • cartilage tissue engineering
  • hybrid construct
  • micro-tissue
  • modular tissue assembly

Fingerprint

Dive into the research topics of 'Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs'. Together they form a unique fingerprint.

Cite this