TY - JOUR
T1 - Automated analysis of individual particles using a commercial capillary electrophoresis system
AU - Ahmadzadeh, Hossein
AU - Dua, Rajat
AU - Presley, Andrew D.
AU - Arriaga, Edgar A.
PY - 2005/1/28
Y1 - 2005/1/28
N2 - Capillary electrophoretic analysis of individual submicrometer size particles has been previously done using custom-built instruments. Despite that these instruments provide an excellent signal-to-noise ratio for individual particle detection, they are not capable of performing automated analyses of particles. Here we report the use of a commercial Beckman P/ACE MDQ capillary electrophoresis (CE) instrument with on-column laser-induced fluorescence (LIF) detection for the automated analysis of individual particles. The CE instrument was modified with an external I/O board that allowed for faster data acquisition rates (e.g. 100 Hz) than those available with the standard instrument settings (e.g. 4 Hz). A series of eight hydrodynamic injections expected to contain 32 ± 6 particles, each followed by an electrophoretic separation at -300 V cm-1 with data acquired at 100 Hz, showed 28 ± 5 peaks corresponding to 31.9 particles as predicted by the statistical overlap theory. In contrast, a similar series of hydrodynamic injections followed by data acquisition at 4 Hz revealed only 8 ± 3 peaks suggesting that the modified system is needed for individual particle analysis. Comparison of electropherograms obtained at both data acquisition rates also indicate: (i) similar migration time ranges; (ii) lower variation in the fluorescence intensity of individual peaks for 100 Hz; and (iii) a better signal-to-noise ratio for 4 Hz raw data. S/N improved for 100 Hz when data were smoothed with a binomial filter but did not reach the S/N values previously reported for post-column LIF detection. The proof-of-principle of automated analysis of individual particles using a commercially available CE system described here opens exciting possibilities for those interested in the study and analyses of organelles, liposomes, and nanoparticles.
AB - Capillary electrophoretic analysis of individual submicrometer size particles has been previously done using custom-built instruments. Despite that these instruments provide an excellent signal-to-noise ratio for individual particle detection, they are not capable of performing automated analyses of particles. Here we report the use of a commercial Beckman P/ACE MDQ capillary electrophoresis (CE) instrument with on-column laser-induced fluorescence (LIF) detection for the automated analysis of individual particles. The CE instrument was modified with an external I/O board that allowed for faster data acquisition rates (e.g. 100 Hz) than those available with the standard instrument settings (e.g. 4 Hz). A series of eight hydrodynamic injections expected to contain 32 ± 6 particles, each followed by an electrophoretic separation at -300 V cm-1 with data acquired at 100 Hz, showed 28 ± 5 peaks corresponding to 31.9 particles as predicted by the statistical overlap theory. In contrast, a similar series of hydrodynamic injections followed by data acquisition at 4 Hz revealed only 8 ± 3 peaks suggesting that the modified system is needed for individual particle analysis. Comparison of electropherograms obtained at both data acquisition rates also indicate: (i) similar migration time ranges; (ii) lower variation in the fluorescence intensity of individual peaks for 100 Hz; and (iii) a better signal-to-noise ratio for 4 Hz raw data. S/N improved for 100 Hz when data were smoothed with a binomial filter but did not reach the S/N values previously reported for post-column LIF detection. The proof-of-principle of automated analysis of individual particles using a commercially available CE system described here opens exciting possibilities for those interested in the study and analyses of organelles, liposomes, and nanoparticles.
KW - Capillary electrophoresis
KW - Fluorescence detection
KW - Individual particle analysis
KW - Latex microspheres
UR - http://www.scopus.com/inward/record.url?scp=12344314418&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=12344314418&partnerID=8YFLogxK
U2 - 10.1016/j.chroma.2004.12.018
DO - 10.1016/j.chroma.2004.12.018
M3 - Article
C2 - 15729825
AN - SCOPUS:12344314418
VL - 1064
SP - 107
EP - 114
JO - Journal of Chromatography A
JF - Journal of Chromatography A
SN - 0021-9673
IS - 1
ER -