Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra

Hélène Angot, Katelyn Mcerlean, Lu Hu, Dylan B. Millet, Jacques Hueber, Kaixin Cui, Jacob Moss, Catherine Wielgasz, Tyler Milligan, Damien Ketcherside, M. Syndonia Bret-Harte, Detlev Helmig

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Rapid Arctic warming, a lengthening growing season, and the increasing abundance of biogenic volatileorganic- compound-emitting shrubs are all anticipated to increase atmospheric biogenic volatile organic compounds (BVOCs) in the Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station (TFS; 68°38′ N, 149°36′ W) in northern Alaska during two back-to-back field campaigns (summers of 2018 and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within the range of values reported in the Eurasian taiga (0-500 parts per trillion by volume - pptv), while monoterpene and sesquiterpene ambient mixing ratios were respectively close to and below the instrumental quantification limit (∼ 2 pptv). Isoprene surface emission rates ranged from 0.2 to 2250 μgCm-2 h-1 (mean of 85 μgCm-2 h-1) and monoterpene emission rates remained, on average, below 1 μgCm-2 h-1 over the course of the study. We further quantified the temperature dependence of isoprene emissions from local vegetation, including Salix spp. (a known isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180 %-215% emission increase in response to a 3-4 °C warming, and the MEGAN2.1 temperature algorithm exhibits a close fit with observations for enclosure temperatures in the 0-30 °C range. The data presented here provide a baseline for investigating future changes in the BVOC emission potential of the under-studied Arctic tundra environment.

Original languageEnglish (US)
Article number323
Pages (from-to)6219-6236
Number of pages18
JournalBiogeosciences
Volume17
Issue number23
DOIs
StatePublished - Dec 9 2020

Bibliographical note

Funding Information:
Financial support. This research was funded by the National Science Foundation (grant no. 1707569). Undergraduate students Kate-lyn McErlean, Jacob Moss, and Kaixin Cui received financial support from the University of Colorado Boulder’s Undergradu- ate Research Opportunities Program (UROP; grant nos. 5352323, 4422751, and 4332562, respectively).

Publisher Copyright:
© Author(s) 2020.

Fingerprint

Dive into the research topics of 'Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra'. Together they form a unique fingerprint.

Cite this