Biological impact of transpulmonary driving pressure in experimental acute respiratory distress syndrome

Cynthia S. Samary, Raquel S. Santos, Cíntia L. Santos, Nathane S. Felix, Maira Bentes, Thiago Barboza, Vera L. Capelozzi, Marcelo M. Morales, Cristiane S N B Garcia, Sergio A L Souza, John J. Marini, Marcelo Gama De Abreu, Pedro L. Silva, Paolo Pelosi, Patricia R M Rocco

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Background: Ventilator-induced lung injury has been attributed to the interaction of several factors: tidal volume (VT), positive end-expiratory pressure (PEEP), transpulmonary driving pressure (difference between transpulmonary pressure at end-inspiration and end-expiration, ΔP,L), and respiratory system plateau pressure (Pplat,rs). Methods: Forty-eight Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomized into combinations of VT and PEEP, yielding three different ΔP,L levels: ΔP,LLOW (VT = 6 ml/kg, PEEP = 3 cm H2O); ΔP,LMEAN (VT = 13 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 9.5 cm H2O); and ΔP,LHIGH (VT = 22 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 11 cm H2O). In other groups, at low VT, PEEP was adjusted to obtain a Pplat,rs similar to that achieved with ΔP,LMEAN and ΔP,LHIGH at high VT. Results: At ΔP,LLOW, expressions of interleukin (IL)-6, receptor for advanced glycation end products (RAGE), and amphiregulin were reduced, despite morphometric evidence of alveolar collapse. At ΔP,LHIGH (VT = 6 ml/kg and PEEP = 11 cm H2O), lungs were fully open and IL-6 and RAGE were reduced compared with ΔP,LMEAN (27.4 ± 12.9 vs. 41.6 ± 14.1 and 0.6 ± 0.2 vs. 1.4 ± 0.3, respectively), despite increased hyperinflation and amphiregulin expression. At ΔP,LMEAN (VT = 6 ml/kg and PEEP = 9.5 cm H2O), when PEEP was not high enough to keep lungs open, IL-6, RAGE, and amphiregulin expression increased compared with ΔP,LLOW (41.6 ± 14.1 vs. 9.0 ± 9.8, 1.4 ± 0.3 vs. 0.6 ± 0.2, and 6.7 ± 0.8 vs. 2.2 ± 1.0, respectively). At Pplat,rs similar to that achieved with ΔP,LMEAN and ΔP,LHIGH, higher VT and lower PEEP reduced IL-6 and RAGE expression. Conclusion: In the acute respiratory distress syndrome model used in this experiment, two strategies minimized ventilatorinduced lung injury: (1) low VT and PEEP, yielding low ΔP,L and Pplat,rs; and (2) low VT associated with a PEEP level sufficient to keep the lungs open.

Original languageEnglish (US)
Pages (from-to)423-433
Number of pages11
JournalAnesthesiology
Volume123
Issue number2
DOIs
StatePublished - Aug 1 2015

Bibliographical note

Publisher Copyright:
Copyright © 2015, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc.

Fingerprint

Dive into the research topics of 'Biological impact of transpulmonary driving pressure in experimental acute respiratory distress syndrome'. Together they form a unique fingerprint.

Cite this