TY - JOUR
T1 - Canonical forms and integrability of bi-Hamiltonian systems
AU - Olver, Peter J.
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 1990/8/13
Y1 - 1990/8/13
N2 - Turiel's complete list of canonical forms for finite-dimensional, nondegenerate, compatible pairs of Hamiltonian structures is used to determine the precise local integrability of bi-Hamiltonian systems of ordinary differential equation. Also, classification of incompatible Hamiltonian pairs in four dimensions and the relationship between compatibility and integrability are discussed.
AB - Turiel's complete list of canonical forms for finite-dimensional, nondegenerate, compatible pairs of Hamiltonian structures is used to determine the precise local integrability of bi-Hamiltonian systems of ordinary differential equation. Also, classification of incompatible Hamiltonian pairs in four dimensions and the relationship between compatibility and integrability are discussed.
UR - http://www.scopus.com/inward/record.url?scp=25044445587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=25044445587&partnerID=8YFLogxK
U2 - 10.1016/0375-9601(90)90775-J
DO - 10.1016/0375-9601(90)90775-J
M3 - Article
AN - SCOPUS:25044445587
VL - 148
SP - 177
EP - 187
JO - Physics Letters, Section A: General, Atomic and Solid State Physics
JF - Physics Letters, Section A: General, Atomic and Solid State Physics
SN - 0375-9601
IS - 3-4
ER -