Characteristics of sequential movements during early learning period in monkeys

Miya K. Rand, Okihide Hikosaka, Shigehiro Miyachi, Xiaofeng Lu, Kae Nakamura, Katsuya Kitaguchi, Yasushi Shimo

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

We previously demonstrated that the organization of a learned sequential movement, after long-term practice, is based on the entire sequence and that the information pertaining to the sequence is largely specific to the hand used for practice. However, it remained unknown whether these characteristics are present from the beginning of learning. To answer the question, we examined the performance of four monkeys for the same sequential procedure in the early stage of learning. The monkeys' task was to press five consecutive pairs of buttons (which were illuminated), in a correct order for every pair, which they had to find by trial-and-error during a block of trials. We first examined whether the memory of a sequential procedure that was learned once was specific to the hand used for practice. The second time that the monkeys attempted to learn a novel sequence, they were required to use either the same hand they used the first time or the opposite hand. The number of errors decreased to a similar degree in the same-hand condition and in the opposite-hand condition. The performance time decreased in the same-hand condition, but not in the opposite-hand condition. The results suggest that, in the early stage of learning, memory of the correct performance of a sequential procedure is not specific to the hand originally used to perform the sequence (unlike the well-learned stage, where the transfer was incomplete), whereas memory of the fast performance of a sequential procedure is relatively specific to the hand used for practice (like the well-learned stage). We then examined whether memory of a sequential procedure depends on the entire sequence, not individual stimulus sets. For the second learning block, we had the monkey learn the sequence in the same or reversed order. In the reversed order, the order within each set was identical, but the order of sets was reversed. The number of errors decreased in both the same-order and reversed-order conditions to a similar degree for two out of four monkeys; the decrease was larger in the same-order condition for the other two monkeys. For all monkeys, the performance time decreased in the same-order condition, but not in the reversed-order condition. The results suggest that the memory structure for correct performance varies among monkeys in the early stage of learning (unlike the well-learned stage, where the memory of individual sets was consistently absent). On the other hand, memory of the fast performance of a sequential procedure is relatively specific to the learned order used for practice (like the well-learned stage).

Original languageEnglish (US)
Pages (from-to)293-304
Number of pages12
JournalExperimental Brain Research
Volume131
Issue number3
DOIs
StatePublished - 2000

Bibliographical note

Funding Information:
Acknowledgements We are grateful to Dr. M. Kato for designing the computer programs. We thank M. Togawa and M. Yoshitomo for technical assistance. This study was supported by (1) Grant-in-Aid for Scientific Research on Priority Areas from The Ministry of Education, Science, and Culture of Japan, (2) Grant-in-Aid for Creative Basic Research from the Ministry of Education, Science, and Culture of Japan, and (3) The Japan Society for the Promotion of Science (JSPS) Research for the Future program.

Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.

Keywords

  • Memory transfer
  • Monkey
  • Procedural memory
  • Sequential movements

Fingerprint

Dive into the research topics of 'Characteristics of sequential movements during early learning period in monkeys'. Together they form a unique fingerprint.

Cite this