Characterization of cell association and heat treatment using iron oxide magnetic nanoparticles

Venkat S. Kalambur, Ellen Longmire, John C. Bischof

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Magnetic iron oxide nanoparticles (NPs) have intrinsic advantages over other NPs for various biomedical applications. These advantages include visualization under Magnetic Resonance Imaging (MRI), heating with Radiofrequency (RF), and movement in a magnetic field. There are now numerous efforts to expand the applications of these particles for non-invasive drug and adjuvant delivery, cellular imaging and in vitro cell sorting and purification. In the present study, we describe methods to (i) assess and quantify NP cell association (ii) facilitate NP heat destruction of cells after association with RF and laser. First, we show that (i) the cell association of iron oxide NPs is dependent on the surface coating (surfactant greater than dextran), time, cell-type and extracellular NP concentrations (saturation with concentration and time). Furthermore, the association fits a simple enzyme Michealis-Menten model. Second, (ii) improved heat destruction of cells can be achieved after laser irradiation compared to traditional RF treatment for similar NP associations. These results and assays show promise for cell sorting and purification applications.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Summer Bioengineering Conference 2007, SBC 2007
Pages1053-1054
Number of pages2
StatePublished - Dec 1 2007
Event2007 ASME Summer Bioengineering Conference, SBC 2007 - Keystone, CO, United States
Duration: Jun 20 2007Jun 24 2007

Publication series

NameProceedings of the ASME Summer Bioengineering Conference 2007, SBC 2007

Other

Other2007 ASME Summer Bioengineering Conference, SBC 2007
Country/TerritoryUnited States
CityKeystone, CO
Period6/20/076/24/07

Fingerprint

Dive into the research topics of 'Characterization of cell association and heat treatment using iron oxide magnetic nanoparticles'. Together they form a unique fingerprint.

Cite this