Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100°C by Pyrobaculum islandicum

K. Kashefi, B. M. Moskowitz, D. R. Lovley

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

In order to gain insight into the significance of biotic metal reduction and mineral formation in hyperthermophilic environments, metal mineralization as a result of the dissimilatory reduction of poorly crystalline Fe(III) oxide, and U(VI) reduction at 100°C by Pyrobaculum islandicum was investigated. When P. islandicum was grown in a medium with poorly crystalline Fe(III) oxide as an electron acceptor and hydrogen as an electron donor, the Fe(III) oxide was reduced to an extracellular, ultrafine-grained magnetite with characteristics similar to that found in some hot environments and that was previously thought to be of abiotic origin. Furthermore, cell suspensions of P. islandicum rapidly reduced the soluble and oxidized form of uranium, U(VI), to extracellular precipitates of the highly insoluble U(IV) mineral, uraninite (UO2). The reduction of U(VI) was dependent on the presence of hydrogen as the electron donor. These findings suggest that microbes may play a key role in metal deposition in hyperthermophilic environments and provide a plausible explanation for such phenomena as magnetite accumulation and formation of uranium deposits at ca. 100°C.

Original languageEnglish (US)
Pages (from-to)147-154
Number of pages8
JournalGeobiology
Volume6
Issue number2
DOIs
StatePublished - Mar 2008

Fingerprint

Dive into the research topics of 'Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100°C by Pyrobaculum islandicum'. Together they form a unique fingerprint.

Cite this