Charging, coagulation, and heating model of nanoparticles in a low-Pressure plasma accounting for Ion-Neutral collisions

Federico Galli, Uwe R. Kortshagen

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Low-pressure silane-argon plasmas allow the production of silicon particles of different sizes and morphologies. A better understanding of the correlations between dusty-plasma properties and particle morphology is very important for understanding and optimizing the particle synthesis. An analytical model predicting the nanoparticle charging, coagulation, and heating in a low-pressure plasma is here presented. The model includes the effect of collisions between ions and neutrals in proximity of the particles. In agreement with experimental evidence for pressures of a few torr, a charge distribution that is less negative than the prediction from the collisionless orbital-motion limited theory is obtained. The reduced charging causes an enhanced ion current to the particle while still preventing coagulation and conserving a monodisperse particle size distribution. Ion-electron recombination at the particle surface, together with other particle heating and cooling mechanisms typical of silane-argon plasmas, are studied in a particle-heating model which predicts the nanoparticle temperature. The effect of plasma parameters on the nanoparticle temperature is discussed, and the predictive power of the model is demonstrated from the appearance of photoluminescent properties in silicon nanoparticles, a property present only in crystalline particles. A correlation between plasma power, ion density, particle temperature, and particle crystallinity is finally developed.

Original languageEnglish (US)
Article number5342527
Pages (from-to)803-809
Number of pages7
JournalIEEE Transactions on Plasma Science
Issue number4 PART 3
StatePublished - Apr 2010

Bibliographical note

Funding Information:
Manuscript received June 29, 2009. First published December 1, 2009; current version published April 9, 2010. This work was supported in part by NSF under Grant CBET-0500332 and in part by NSF through the NNIN program carried out in the Institute of Technology Characterization Facility, University of Minnesota.

Copyright 2010 Elsevier B.V., All rights reserved.


  • Dusty plasma
  • Nanoparticles
  • Particle charging
  • Particle heating
  • Silicon

Fingerprint Dive into the research topics of 'Charging, coagulation, and heating model of nanoparticles in a low-Pressure plasma accounting for Ion-Neutral collisions'. Together they form a unique fingerprint.

Cite this