Comparative genome sequencing identifies a prophage-associated genomic island linked to host adaptation of Lawsonia intracellularis infections

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Lawsonia intracellularis is an obligate intracellular bacterium and the causative agent of proliferative enteropathy (PE). The disease is endemic in pigs, emerging in horses and has also been reported in a variety of other animal species, including nonhuman primates. Comparing the whole genome sequences of a homologous porcine L. intracellularis isolate cultivated for 10 and 60 passages in vitro, we identified a 18-kb prophage-associated genomic island in the passage 10 (pathogenic variant) that was lost in the passage 60 (non-pathogenic variant). This chromosomal island comprises 15 genes downstream from the prophage DLP12 integrase gene. The prevalence of this genetic element was evaluated in 12 other L. intracellularis isolates and in 53 infected animals and was found to be conserved in all porcine isolates cultivated for up to 20 passages and was lost in isolates cultivated for more than 40 passages. Furthermore, the prophage region was also present in 26 fecal samples derived from pigs clinically affected with both acute and chronic forms of the disease. Nevertheless, equine L. intracellularis isolates evaluated did not harbor this genomic island regardless of the passage in vitro. Additionally, fecal samples from 21 clinically affected horses and four wild rabbits trapped in horse farms experiencing PE outbreaks did not show this prophage-associated island. Although the presence of this prophage-associated island was not essential for a virulent L. intracellularis phenotype, this genetic element was porcine isolate-specific and potentially contributed to the ecological specialization of this organism for the swine host.

Original languageEnglish (US)
Article number49
JournalVeterinary research
Volume44
Issue number1
DOIs
StatePublished - 2013

Bibliographical note

Funding Information:
We thank Dr Dana Beckler and Dr Roberto Guedes for providing porcine L. intracellularis isolates, the Minnesota Veterinary Diagnostic Laboratory at the University of Minnesota for providing the clinical samples from infected animals and the Minnesota Supercomputing Institute at the University of Minnesota for technical data analysis assistance. Fabio A Vannucci was supported by the Brazilian government sponsoring agency “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq).

Fingerprint

Dive into the research topics of 'Comparative genome sequencing identifies a prophage-associated genomic island linked to host adaptation of Lawsonia intracellularis infections'. Together they form a unique fingerprint.

Cite this