Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium

Graham V. Candler, Robert W. MacCormack

Research output: Contribution to journalArticlepeer-review

Abstract

A numerical method to compute a two-dimensional hypersonic flowfield that is weakly ionized and in thermochemical nonequilibrium has been developed. Such a flowfield is described by coupled partial differential equations for the conservation of species mass, mass-averaged momentum, vibrational energy of each diatomic species, electron energy, and total energy. The steady-state solution to these fully coupled equations has been obtained for a gas composed of seven chemical species and characterized by six temperatures using an implicit Gauss-Seidel line relaxation technique. The computed electron number densities in the flowfield of a sphere cone compare well with experimental results.

Original languageEnglish (US)
Pages (from-to)266-273
Number of pages8
JournalJournal of thermophysics and heat transfer
Volume5
Issue number3
DOIs
StatePublished - 1991
Externally publishedYes

Bibliographical note

Funding Information:
The authors would like to acknowledge the support for this work from SDIO/IST, managed by the Army Research Office, under Contract DAA103-86-K-0139, the Department of the Air Force under Contract F33615-86-C-3015, and NASA under a Hypersonic Training and Research Grant NAGW 965. The authors would also like to thank Dr. Chul Park of NASA Ames Research Center for his many helpful suggestions.

Publisher Copyright:
Copyright © 1988 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Cite this