TY - JOUR

T1 - Consequences of block number on the order-disorder transition and viscoelastic properties of linear (AB) n multiblock copolymers

AU - Wu, Lifeng

AU - Cochran, Eric W.

AU - Lodge, Timothy P.

AU - Bates, Frank S.

PY - 2004/5/4

Y1 - 2004/5/4

N2 - The effect of block number on the order-disorder transition (ODT) and viscoelastic properties were studied for linear (AB) n multiblock copolymers. A series of symmetric poly(styrene-b-isoprene) n multiblocks ((SI) n, n = 1-10) were synthesized by anionic polymerization, and their order-disorder transition temperatures (T ODT) were located using dynamic mechanical spectroscopy. As n increases, T ODT approaches an asymptotic value, consistent with random phase approximation calculations. A systematic difference between the experimental and theoretical results is attributable to the effects of fluctuations, independent of the number of blocks. Addition of up to 20 vol % of a nonselective solvent depresses T ODT, independent of n. The interaction parameter at the transition, ODT, decreases with polymer volume fraction φ as χ ODT ∼ φ -1.3, consistent with previous reports for diblocks (n = 1). In contrast, the viscoelasticity of (AB) n block copolymers depends strongly on block number. A crossover frequency, ω x, demarcating the transition from block/chain- and domain-dominated relaxation, scales as n- 7.5, which is much stronger than the molecular weight dependence of the longest relaxation time for entangled homopolymers. Coherent lamellar grains were imaged for quenched and annealed (SI) n, n = 1, 6, and 10, by transmission electron microscopy. Ellipsoidal lamellar grains, with aspect ratios of 2-3, were recorded, independent of block number, but the grain size decreased with increasing n. These results establish the criteria for designing multiblock copolymers based on χ, N, n, and concentration.

AB - The effect of block number on the order-disorder transition (ODT) and viscoelastic properties were studied for linear (AB) n multiblock copolymers. A series of symmetric poly(styrene-b-isoprene) n multiblocks ((SI) n, n = 1-10) were synthesized by anionic polymerization, and their order-disorder transition temperatures (T ODT) were located using dynamic mechanical spectroscopy. As n increases, T ODT approaches an asymptotic value, consistent with random phase approximation calculations. A systematic difference between the experimental and theoretical results is attributable to the effects of fluctuations, independent of the number of blocks. Addition of up to 20 vol % of a nonselective solvent depresses T ODT, independent of n. The interaction parameter at the transition, ODT, decreases with polymer volume fraction φ as χ ODT ∼ φ -1.3, consistent with previous reports for diblocks (n = 1). In contrast, the viscoelasticity of (AB) n block copolymers depends strongly on block number. A crossover frequency, ω x, demarcating the transition from block/chain- and domain-dominated relaxation, scales as n- 7.5, which is much stronger than the molecular weight dependence of the longest relaxation time for entangled homopolymers. Coherent lamellar grains were imaged for quenched and annealed (SI) n, n = 1, 6, and 10, by transmission electron microscopy. Ellipsoidal lamellar grains, with aspect ratios of 2-3, were recorded, independent of block number, but the grain size decreased with increasing n. These results establish the criteria for designing multiblock copolymers based on χ, N, n, and concentration.

UR - http://www.scopus.com/inward/record.url?scp=2442710456&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2442710456&partnerID=8YFLogxK

U2 - 10.1021/ma035583m

DO - 10.1021/ma035583m

M3 - Article

AN - SCOPUS:2442710456

VL - 37

SP - 3360

EP - 3368

JO - Macromolecules

JF - Macromolecules

SN - 0024-9297

IS - 9

ER -