Constrained Probabilistic Search for a One-Dimensional Random Walker

Narges Noori, Alessandro Renzaglia, Joshua Vander Hook, Volkan Isler

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

This paper addresses a fundamental search problem in which a searcher subject to time and energy constraints tries to find a mobile target. The target's motion is modeled as a random walk on a discrete set of points on a line segment. At each time step, the target chooses one of the adjacent nodes at random and moves there. We study two detection models. In the no-crossing model, the searcher detects the target if it is on the same node or if it takes the same edge at the same time. In the crossing model, detection happens only if the target lands on the same node at the same time. For the no-crossing model, where move and stay actions may have different costs, we present an optimal search strategy under energy and time constraints. For the crossing model, we formulate the problem of designing an optimal strategy as a partially observable Markov decision process (POMDP) and solve it using methods that reduce the state-space representation of the belief. The POMDP solution reveals structural properties of the optimal solution. We use this structure to design an efficient strategy and analytically study its performance. Finally, we present preliminary experimental results to demonstrate the applicability of our model to our tracking system, which is used for finding radio-tagged invasive fish.

Original languageEnglish (US)
Article number7393596
Pages (from-to)261-274
Number of pages14
JournalIEEE Transactions on Robotics
Volume32
Issue number2
DOIs
StatePublished - Apr 2016

Bibliographical note

Funding Information:
This work was supported by the National Science Foundation under Grant 1111638 and Grant 0917676.

Publisher Copyright:
© 2015 IEEE.

Keywords

  • Networked robots
  • sensor networks
  • surveillance systems

Fingerprint

Dive into the research topics of 'Constrained Probabilistic Search for a One-Dimensional Random Walker'. Together they form a unique fingerprint.

Cite this