Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective

Saurabh Kumar Singh, Julien Eng, Mihail Atanasov, Frank Neese

Research output: Contribution to journalReview articlepeer-review

174 Scopus citations

Abstract

In this work, a general, user-friendly method – ab initio ligand field theory (AILFT), is described and illustrated. AILFT allows one to unambiguously extract all ligand field parameters (the ligand field one-electron matrix VLFT, the Racah parameters B and C, and the spin-orbit coupling parameter ζ) from relatively straightforward multi-reference ab initio calculations. The method applies to mononuclear complexes in dn or fn configurations. The method is illustrated using complete active space self-consistent field (CASSCF) and N-electron valence perturbation theory (NEVPT2) calculations on a series of well documented octahedral complexes of CrIII with simple ligands such as F, Cl, Br, I, NH3 and CN. It is shown that all well-known trends for the value of 10Dq (the spectrochemical series) are faithfully reproduced by AILFT. By comparison of B and ζ for CrIII in these complexes with the parameters calculated for the free ion Cr3+, the covalency of the Cr-ligand bond can be assessed quantitatively (the non-relativistic and relativistic nephelauxetic effects). The variation of ligand field parameters for complexes of 3d, 4d and 5d elements is studied using MCl6 3− (M = CrIII, MoIII, WIII) as model examples. As reflected in variations of 10Dq, B and ζ across this series, metal-ligand covalency increases from CrCl6 3− to MoCl6 3− to WCl6 3−. Using the angular overlap model, the one-electron parameters of the ligand field matrix are decomposed into increments for σ- and π- metal-ligand interactions. This allows for the quantification of variations in σ- and π-ligand donor properties of these ligands. Using these results, the well documented two-dimensional spectroscopic series for complexes of CrIII is quantitatively reproduced. Comparison of the results obtained using CASSCF and NEVPT2 reveals the importance of dynamic electron correlation. Finally, the limitations of the AILFT method for complexes with increasing metal-ligand covalency are analyzed and discussed.

Original languageEnglish (US)
Pages (from-to)2-25
Number of pages24
JournalCoordination Chemistry Reviews
Volume344
DOIs
StatePublished - Aug 1 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 Elsevier B.V.

Keywords

  • Ab initio ligand field theory (AILFT)
  • Ab initio quantum chemistry
  • Absorption spectroscopy
  • Angular overlap model (AOM)
  • Complete active space self-consistent field (CASSCF)
  • Crystal field theory
  • Ligand field theory
  • Metal-ligand bonding
  • N-electron valence perturbation theory to second order (NEVPT2)
  • Transition metal complexes

Fingerprint

Dive into the research topics of 'Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective'. Together they form a unique fingerprint.

Cite this