Cryptic speciation in Protoceratium reticulatum (Dinophyceae): Evidence from morphological, molecular and ecophysiological data

Na Wang, Kenneth Neil Mertens, Bernd Krock, Zhaohe Luo, Amélie Derrien, Vera Pospelova, Yubo Liang, Gwenael Bilien, Kirsty F. Smith, Stijn De Schepper, Stephan Wietkamp, Urban Tillmann, Haifeng Gu

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20–25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.

Original languageEnglish (US)
Article number101610
JournalHarmful Algae
StatePublished - Sep 2019

Bibliographical note

Funding Information:
This project was supported by the National Key Research and Development of China ( 2017YFC1404303 ) and National Natural Science Foundation of China ( 41676117 ). Funding was also provided to KNM, AD and GB by a “Projet de politique de site” (MINITOX). Partial funding for this research was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to VP. Herlé Goraguer is thanked for providing a sediment sample from Saint-Pierre-et-Miquelon. Yoann Baldi is thanked for sampling Diane Lagoon (Corsica). Francine Beaujot is thanked for collecting Chilean sample from Comau Fjord (Piedra C). Kenneth Mertens, Gwenael Bilien and Stijn De Schepper acknowledge a PHC AURORA Grant (38497RE). [CG]


  • Biogeography
  • Cysts
  • Growth
  • ITS rDNA sequences
  • Intraspecific variability
  • Ribotype
  • Yessotoxin

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint Dive into the research topics of 'Cryptic speciation in Protoceratium reticulatum (Dinophyceae): Evidence from morphological, molecular and ecophysiological data'. Together they form a unique fingerprint.

Cite this