Cytoplasmic dynein function is essential in Drosophila melanogaster

Janice Gepner, Min Gang Li, Susan Ludmann, Cynthia Kortas, Kristin Boylan, Stanley J.P. Iyadurai, Maura McGrail, Thomas S. Hays

Research output: Contribution to journalArticlepeer-review

111 Scopus citations

Abstract

The microtubule motor cytoplasmic dynein has been implicated in a variety of intracellular transport processes. We previously identified and characterized the Drosophila gene Dhc64C, which encodes a cytoplasmic dynein heavy chain. To investigate the function of the cytoplasmic dynein motor, we initiated a mutational analysis of the Dhc64C dynein gene. A small deletion that removes the chromosomal region containing the heavy chain gene was used to isolate EMS-induced lethal mutations that defined at least eight essential genes in the region. Germline transformation with a Dhc64C transgene rescued 16 mutant alleles in the single complementation group that identifies the dynein heavy chain gene. All 16 alleles were hemizygous lethal, which demonstrates that the cytoplasmic dynein heavy chain gene Dhc64C is essential for Drosophila development. Furthermore, our failure to recover somatic clones of cells homozygous for a Dhc64C mutation indicates that cytoplasmic dynein function is required for cell viability in several Drosophila tissues. The intragenic complementation of dynein alleles reveals multiple mutant phenotypes including male and/or female sterility, bristle defects, and defects in eye development.

Original languageEnglish (US)
Pages (from-to)865-878
Number of pages14
JournalGenetics
Volume142
Issue number3
StatePublished - Mar 1996

Fingerprint

Dive into the research topics of 'Cytoplasmic dynein function is essential in Drosophila melanogaster'. Together they form a unique fingerprint.

Cite this