De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes

Matthew B. Hufford, Arun S. Seetharam, Margaret R. Woodhouse, Kapeel M. Chougule, Shujun Ou, Jianing Liu, William A. Ricci, Tingting Guo, Andrew Olson, Yinjie Qiu, Rafael Della Coletta, Silas Tittes, Asher I. Hudson, Alexandre P. Marand, Sharon Wei, Zhenyuan Lu, Bo Wang, Marcela K. Tello-Ruiz, Rebecca D. Piri, Na WangDong won Kim, Yibing Zeng, Christine H. O'Connor, Xianran Li, Amanda M. Gilbert, Erin Baggs, Ksenia V. Krasileva, John L. Portwood, Ethalinda K.S. Cannon, Carson M. Andorf, Nancy Manchanda, Samantha J. Snodgrass, David E. Hufnagel, Qiuhan Jiang, Sarah Pedersen, Michael L. Syring, David A. Kudrna, Victor Llaca, Kevin Fengler, Robert J. Schmitz, Jeffrey Ross-Ibarra, Jianming Yu, Jonathan I. Gent, Candice N. Hirsch, Doreen Ware, R. Kelly Dawe

Research output: Contribution to journalArticlepeer-review

186 Scopus citations

Abstract

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.

Original languageEnglish (US)
Pages (from-to)655-662
Number of pages8
JournalScience
Volume373
Issue number6555
DOIs
StatePublished - Aug 6 2021

Bibliographical note

Publisher Copyright:
© 2021 American Association for the Advancement of Science. All rights reserved.

Fingerprint

Dive into the research topics of 'De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes'. Together they form a unique fingerprint.

Cite this