Dendritic impulse collisions and shifting sites of action potential initiation contract and extend the receptive field of an amacrine cell

Audrey S. Royer, Robert F Miller

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

We evaluated the contributions of somatic and dendritic impulses to the receptive field dimensions of amacrine cells in the amphibian retina. For this analysis, we used the NEURON simulation program with a multicompartmental, multichannel model of an On-Off amacrine cell with a three-dimensional structure obtained through computer tracing techniques. Simulated synaptic inputs were evenly spaced along the dendritic branches and organized into eight annuli of increasing radius. The first set of simulations activated each ring progressively to simulate an area summation experiment, while a second approach activated each annulus individually. Both sets of simulations were done with and without the presence of Na channels in the dendrites and soma. Unexpectedly, the receptive field dimensions observed in the area summation simulations was often smaller than that predicted from the summation of the annular simulations. Collisions of action potentials moving in opposite directions in the dendrites largely accounted for this contraction in receptive field size for the area summation studies. The presence of dendritic Na channels increased the size of the receptive field beyond that achieved in their absence and allowed the physiological size of the receptive field to approximate the physical dimensions of the dendritic tree. This receptive field augmentation was the result of impulse generating ability in the dendrites which enhanced the signal observed at the soma. These simulations provide a plausible mechanistic explanation for physiological recordings from amacrine cells that show similar phenomena.

Original languageEnglish (US)
Pages (from-to)619-634
Number of pages16
JournalVisual Neuroscience
Volume24
Issue number4
DOIs
StatePublished - Jul 2007

Keywords

  • Computer model
  • Dendrites
  • Retina
  • Sodium channels
  • Summation

Fingerprint

Dive into the research topics of 'Dendritic impulse collisions and shifting sites of action potential initiation contract and extend the receptive field of an amacrine cell'. Together they form a unique fingerprint.

Cite this