Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters

James E. Farnsworth, Sagar M. Goyal, Seung Won Kim, Thomas H. Kuehn, Peter C. Raynor, M. A. Ramakrishnan, Senthilvelan Anantharaman, Weihua Tang

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 ± 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 ± 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.

Original languageEnglish (US)
Pages (from-to)1006-1013
Number of pages8
JournalJournal of Environmental Monitoring
Volume8
Issue number10
DOIs
StatePublished - 2006

Fingerprint

Dive into the research topics of 'Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters'. Together they form a unique fingerprint.

Cite this