Differential ascending projections of temporomandibular joint-responsive brainstem neurons to periaqueductal gray and posterior thalamus of male and female rats

Z. Chang, K. Okamoto, D. A. Bereiter

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Several craniofacial pain conditions, including temporomandibular joint disorders (TMJDs), are more prevalent in women than men. The basis for sex differences in deep craniofacial pain is not known. The present study compared the magnitude of ascending projections from temporomandibular joint (TMJ)-responsive neurons in trigeminal brainstem with the ventrolateral periaqueductal gray (vlPAG) or posterior nucleus of the thalamus (Po) in males and female rats. Fluorogold (FG) was injected into vlPAG or Po, and TMJ-responsive neurons were identified by Fos-like immunoreactivity (Fos-LI) after mustard oil injection. TMJ-evoked Fos-LI was similar in males and females; however, significant differences in cell counts were seen for FG single-labeled and Fos/FG double-labeled neurons in trigeminal brainstem. After vlPAG injections, the number of FG-labeled neurons in trigeminal subnucleus interpolaris (Vi), ventral interpolaris/caudalis transition (vl-Vi/Vc), and dorsal paratrigeminal region (dPa5) was greater in females than males. The percentage of Fos/FG double-labeled neurons in vl-Vi/Vc and dPa5 after vlPAG injection also was greater in females than males. In contrast, after Po injections, males displayed a greater number of FG-labeled neurons in superficial laminae (Lam I/II) of trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C 1-2) and deeper laminae (Lam III/V) at C 1-2 than females. The percentage of Fos/FG double-labeled neurons in Lam I/II of Vc after Po injection also was greater in males than females. These data revealed significant sex differences in ascending projections from TMJ-responsive neurons in trigeminal brainstem. Such differences may influence the ability of males and females to recruit autonomic reflexes and endogenous pain control circuits relevant for TMJ nociception.

Original languageEnglish (US)
Pages (from-to)230-243
Number of pages14
JournalNeuroscience
Volume203
DOIs
StatePublished - Feb 17 2012

Bibliographical note

Funding Information:
The authors thank Randall Thompson for excellent technical assistance. This study was supported by NIH grant DE12758 and the Office of Research on Women's Health.

Keywords

  • Periaqueductal gray
  • Posterior thalamus
  • Sex difference
  • Temporomandibular joint
  • Trigeminal brainstem

Fingerprint

Dive into the research topics of 'Differential ascending projections of temporomandibular joint-responsive brainstem neurons to periaqueductal gray and posterior thalamus of male and female rats'. Together they form a unique fingerprint.

Cite this