Diffusion in the gas phase: The effects of ambient pressure and gas composition

C. V. Paganelli, A. Ar, H. Rahn, O. D. Wangensteen

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Gas transport across the pores of a hen's egg shell occurs by a process of diffusion in the gas phase and for any particular gas depends upon its diffusion coefficient and the pore geometry. The egg shell is thus a convenient model for measuring the diffusive permeability of the shell to a given gas species when its diffusion coefficient is altered by either a change in ambient pressure or by changing the second gas in the diffusion pathway. In this study the permeability of the shell to water vapor and O2 was inversely proportional to ambient pressures over the range of 06 to 8 atmospheres- absolute (ata). The permeability of the shell to water vapor in a He environment (KH2O, He) was 2.4 times KH2O, air. If KO2, N2 ls taken as unity, the permeabilities of the shell to O2 in He, Ar, CO, and Sf(, are 3.38, 0.95, 0.88, and 0.52, respectively. The results are interpreted in terms of the Chapman-Enskog equation, from which binary diffusion coefficients can be predicted for given gas pairs and ambient pressures. These results also provide possible explanations for the structural modification of egg shells in altitude-adapted chickens, and for the reduced insensible water loss in man at high ambient pressure.

Original languageEnglish (US)
Pages (from-to)247-258
Number of pages12
JournalRespiration Physiology
Volume25
Issue number3
DOIs
StatePublished - Dec 1975
Externally publishedYes

Bibliographical note

Funding Information:
Accepted for publication 16 July 1975. ’ This study was aided in part by Contract NOOO14-68-A-0216, (NR lOl-722), between the Office of Naval Research, Department of the Navy, and the State University of New York at Buffalo, and in part by NIH Grant 5 PO1 HL 14414. 2 Present address: Depqrtment of Zoology, Tel-Aviv University, Tel-Aviv, Ramat-Aviv, Israel. 3 Present address: Department of Physiology, 424 Millard Hall, University of Minnesota, Minneapolis, Minn. 55455, U.S.A.

Keywords

  • Egg shell permeability Pressure Gas composition Water vapor diffusion Oxygen diffusion

Fingerprint

Dive into the research topics of 'Diffusion in the gas phase: The effects of ambient pressure and gas composition'. Together they form a unique fingerprint.

Cite this