Diffusivity and viscosity of concentrated hydrogenated polybutadiene solutions

Hui Tao, Timothy P. Lodge, Ernst D. Von Meerwall

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

We report measurements of diffusion (D) and viscosity (η) in hydrogenated polybutadiene (hPB)/alkane solutions. The volume fractions (φ) extend from 0.20 up to the melt and the molecular weights (M) from 4900 up to 440000; the number of entanglements per chain, M/Me, ranges up to about 450. The temperature dependences of both D and η are similar, consistent with literature values, and independent of φ and M. We thus conclude that the monomeric friction factor is also independent of φ and M. For all samples with M/Me ≥ 3 the data are consistent with the scaling relations D approx. M-2.4±0.1φ-1.8±0.2 and η approx. M3.4±0.1φ3.8±0.2; within the precision of the data the M exponents do not depend on φ, and the φ exponents do not depend on M. The M exponent for D in solution is consistent with previously reported studies for φ ≤ 0.4 but apparently conflicts with the reptation value of -2.0 in the melt. However, by comparing with the literature melt self-diffusion data for hPB and six other polymers, it is clear that the exponent is, in fact, universally stronger than -2.0. Furthermore, if a single universal exponent is assumed, the best value based on all the data is -2.28 ± 0.05. Our PHB data resolve the longstanding anomaly that the longest relaxation times τ1 based on translation (approx. Rg2/D) and orientational relaxation (approx. η) appeared to have different M dependences. The data also indicate that for both solutions and melts the dynamics are determined primarily by the number of entanglements per chain. The data are compared with current models of polymer dynamics, both reptative and nonreptative. In the former case it is clear that a self-consistent theory incorporating both 'constraint release' and 'contour length fluctuations' is required.

Original languageEnglish (US)
Pages (from-to)1747-1758
Number of pages12
JournalMacromolecules
Volume33
Issue number5
DOIs
StatePublished - Mar 7 2000

Fingerprint Dive into the research topics of 'Diffusivity and viscosity of concentrated hydrogenated polybutadiene solutions'. Together they form a unique fingerprint.

Cite this