Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes

Andrew J. Jasniewski, Lawrence Que

Research output: Contribution to journalArticlepeer-review

307 Scopus citations

Abstract

A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.

Original languageEnglish (US)
Pages (from-to)2554-2592
Number of pages39
JournalChemical Reviews
Volume118
Issue number5
DOIs
StatePublished - Mar 14 2018

Bibliographical note

Funding Information:
Scheme 5. Landscape of High-Valent Diiron Complexes Supported by the TPA* Liganda

Funding Information:
aA: mononuclear iron complex supported by the TPA ligand; B: a dinuclear iron complex supported by the 6-HPA ligand. L is derived from solvent.

Publisher Copyright:
© 2018 American Chemical Society.

Fingerprint

Dive into the research topics of 'Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes'. Together they form a unique fingerprint.

Cite this