Discovery and fine-mapping of loci associated with MUFAs through trans-ethnic meta-analysis in Chinese and European populations

Yao Hu, Toshiko Tanaka, Jingwen Zhu, Weihua Guan, Jason H.Y. Wu, Bruce M. Psaty, Barbara McKnight, Irena B. King, Qi Sun, Melissa Richard, Ani Manichaikul, Alexis C. Frazier-Wood, Edmond K. Kabagambe, Paul N. Hopkins, Jose M. Ordovas, Luigi Ferrucci, Stefania Bandinelli, Donna K. Arnett, Yii Der I. Chen, Shuang LiangDavid S. Siscovick, Michael Y. Tsai, Stephen S. Rich, Myriam Fornage, Frank B. Hu, Eric B. Rimm, Majken K. Jensen, Rozenn N. Lemaitre, Dariush Mozaffarian, Lyn M. Steffen, Andrew P. Morris, Huaixing Li, Xu Lin

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

MUFAs are unsaturated FAs with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels are associated with cardiometabolic disorders, including CVD, T2D, and metabolic syndrome (MS). Previous genome-wide association studies (GWASs) have identified seven loci for plasma and erythrocyte palmitoleic and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential functional variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in more than 15,000 participants of Chinese and European ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor) ≥ 8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor) ≥ 6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99% credible set was reduced from 16 (covering 94.8 kb) to 5 (covering 19.6 kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR, and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and the trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were in unsaturated FA metabolism and signaling pathways. Our findings provide novel insight into the genetic basis relevant to MUFA metabolism and biology.

Original languageEnglish (US)
Pages (from-to)974-981
Number of pages8
JournalJournal of lipid research
Volume58
Issue number5
DOIs
StatePublished - May 2017

Bibliographical note

Funding Information:
Infrastructure for the CHARGE Consortium was supported in part by the National Heart, Lung, and Blood Institute grant HL105756. The NHAPC study was supported by the major project of the Ministry of Science and Technology of China (2016YFC1304903) and the National Natural Science Foundation of China (81471013, 30930081, 81170734, and 81321062). The ARIC Study was carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C and grants R01HL087641, R01HL59367, and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Infrastructure was partly supported by grant UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. The CARDIA study was conducted and supported by the National Heart, Lung, and Blood Institute in collaboration with the University of Alabama at Birmingham (HHSN268201300025C and HHSN268201300026C), Northwestern University (HHSN268201300027C), University of Minnesota (HHSN268201300028C), Kaiser Foundation Research Institute (HHSN268201300029C), and Johns Hopkins University School of Medicine (HHSN268200900041C). CARDIA is also partially supported by the Intramural Research Program of the National Institute on Aging. Genotyping of the CARDIA participants was supported by National Human Genome Research Institute grants U01-HG-004729, U01-HG-004446, and U01-HG-004424. Statistical analyses and FA measures were funded by National Heart, Lung, and Blood Institute grant R01-HL-084099 (M.F.). The CHS was supported by National Heart, Lung, and Blood Institute contracts HH-SN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, and N01HC85086; and National Heart, Lung, and Blood Institute grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, and R01HL085710, with additional contribution from the National Institute of Neurological Disorders and Stroke. Additional support was provided through National Institute on Aging grant R01AG023629. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences CTSI grant UL1TR000124 and the National Institute of Diabetes and Digestive and Kidney Diseases Diabetes Research Center grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The HPFS and NHS were supported by National Institutes of Health research grants UM1 CA186107, R01 HL034594, UM1 CA167552, R01 HL35464, HL60712, and CA055075; National Heart, Lung, and Blood Institute career development award R00HL098459; American Diabetes Association research grant 1-12-JF-13; and American Heart Association grant 11SDG7380016. The MESA study and MESA SHARe were supported by National Heart, Lung, and Blood Institute contracts N01-HC-95159 through N01-HC-95169 and RR-024156. Funding for MESA SHARe genotyping was provided by National Heart, Lung, and Blood Institute contract N02HL64278. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences CTSI grant UL1TR000124 and the National Institute of Diabetes and Digestive and Kidney Diseases Diabetes Research Center grant DK063491 (Southern California Diabetes Endocrinology Research Center). The GOLDN study was funded by National Heart, Lung, and Blood Institute grants U01HL072524 and HL54776. The InCHIANTI baseline (1998-2000) was supported as a "targeted project" (ICS110.1/RF97.71) by the Italian Ministry of Health and in part by National Institute on Aging contracts 263 MD 9164 and 263 MD 821336. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank all investigators, staff, and participants from the studies of ARIC, CARDIA, CHS, HPFS, NHS, MESA, NHAPC, GOLDN, and InCHIANTI for their contributions to this work.

Publisher Copyright:
Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

Keywords

  • Fatty acid/biosynthesis
  • Fatty acid/desaturases
  • Fatty acid/metabolism
  • Genetics
  • Monounsaturated fatty acid

Fingerprint

Dive into the research topics of 'Discovery and fine-mapping of loci associated with MUFAs through trans-ethnic meta-analysis in Chinese and European populations'. Together they form a unique fingerprint.

Cite this