Discrete element modeling of tool-rock interaction II: Rock indentation

Haiying Huang, Emmanuel Detournay

Research output: Contribution to journalArticlepeer-review

84 Scopus citations

Abstract

SUMMARY: The failure mechanisms induced by a wedge-shaped tool indenting normally against a rock surface are investigated using the discrete element method (DEM). The main focus of this study is to explore the conditions controlling the transition from a ductile to a brittle mode of failure. The development of a damage zone and the initiation and propagation of a brittle fracture is well captured by the DEM simulations. The numerical results support the conjecture that initiation of brittle fractures is governed by a scaled flaw length Λ, a ratio between the flaw size λ and the characteristic length ℓ = KIc/σc2 (whereKIc is the toughness and σc the uniaxial compressive strength). The size of the damage zone agrees well with analytical predictions based on the cavity expansion model. The effects of a far-field confining stress and the existence of a relief surface near the indenter are also examined.

Original languageEnglish (US)
Pages (from-to)1930-1947
Number of pages18
JournalInternational Journal for Numerical and Analytical Methods in Geomechanics
Volume37
Issue number13
DOIs
StatePublished - Sep 2013

Keywords

  • Discrete element
  • Indentation
  • Numerical modeling

Fingerprint

Dive into the research topics of 'Discrete element modeling of tool-rock interaction II: Rock indentation'. Together they form a unique fingerprint.

Cite this