Disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis

Jeffrey M. Flynn, Lydia C. Cameron, Talia D. Wiggen, Jordan M. Dunitz, William R. Harcombe, Ryan C. Hunter

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro. However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a "weakest-link" approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them. IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa. The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections.

Original languageEnglish (US)
Article numbere00343-20
JournalmSphere
Volume5
Issue number2
DOIs
StatePublished - Mar 1 2020

Bibliographical note

Funding Information:
This work was supported by the NHLBI (grant 1HL136919), a Gilead Sciences Investigator Sponsored Research grant to R.C.H. and J.M.D., a Cystic Fibrosis Foundation postdoctoral fellowship to J.M.F. (FLYNN16F0), and an American Society for Microbiology undergraduate research fellowship to L.C.C. The funders had no role in study design, data collection, and interpretation. We acknowledge the patients and families at the UMN Cystic Fibrosis Center for their participation in these studies.

Publisher Copyright:
© 2020 Flynn et al.

Keywords

  • Antibiotics
  • Cross-feeding
  • Cystic fibrosis
  • Pseudomonas aeruginosa

Fingerprint

Dive into the research topics of 'Disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis'. Together they form a unique fingerprint.

Cite this