Documenting the degradation of animal-tissue residues on experimental stone tools: a multi-analytical approach

Gilliane Monnier, Kaitlyn May

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

In lithic residue analysis, the identification of degraded animal tissues on stone tools is challenging due to many factors, not least of which is the fact that residues are complex, heterogeneous mixtures of many different kinds of molecules. In order to aid in their identification, a reference library of infrared spectra of residues collected using Fourier-transform infrared microspectroscopy (FTIRM) has recently been published (Monnier et al J Archaeol Sci: Rep 18:806–823, 2018). The goal of the present study is to explore the effects of decomposition on residues. Accordingly, we buried flakes with residues in compost for 1 year, then excavated them and documented both their appearance (using visible-light microscopy (VLM) and scanning electron microscopy (SEM)) and molecular composition (using FTIRM). The results show that while some residues (like meat and blood) disappeared entirely, others (fat and skin) were preserved on the bottoms of flakes buried in deep layers within the compost. Although the residues were damaged by microbial activity, their FTIRM spectra were clearly interpretable. Residues containing hydroxyapatite (bone and fish scales) and keratin (feather barbules, hair, and skin) were relatively well preserved. Their structures were in many cases recognizable, and their FTIRM spectra were entirely consistent with the FTIRM spectra of the standards. The results of the experiment show that the decay of animal tissues in compost proceeds primarily as a result of microbial activity, which appears to remove the tissues before they have a chance to oxidize or experience other biochemical changes. We conclude that if ancient residues have not been removed by microbial action, they can be identified using FTIR standards based upon fresh residues, such as those published in Monnier et al J Archaeol Sci 78:158–178, (2017), Monnier et al. 2018, J Archaeol Method Theory 25(1):1-44.

Original languageEnglish (US)
Pages (from-to)6803-6827
Number of pages25
JournalArchaeological and Anthropological Sciences
Volume11
Issue number12
DOIs
StatePublished - Dec 1 2019

Bibliographical note

Funding Information:
This work was funded by NSF grant # BCS-1420702. It was carried out at the University of Minnesota in the Evolutionary Anthropology Laboratories (College of Liberal Arts); at the Advanced Imaging Service for Objects and Spaces (AISOS) in the College of Liberal Arts; at the Characterization Facility (College of Science and Engineering), which receives partial support from the NSF through the MRSEC program; and at LacCore: National Lacustrine Core Facility (College of Science and Engineering), which receives partial support from the NSF. We wish to thank the many people at these centers who helped us along the way: Gil Tostevin, Matt Edling, Samantha Porter, Colin McFadden, Bing Luo, Kristina Brady Shannon, and Amy Myrbo. Many thanks go to Edward Idarraga for his help with the figures, and we thank two anonymous reviewers for their helpful comments.

Funding Information:
This work was funded by NSF grant # BCS-1420702. It was carried out at the University of Minnesota in the Evolutionary Anthropology Laboratories (College of Liberal Arts); at the Advanced Imaging Service for Objects and Spaces (AISOS) in the College of Liberal Arts; at the Characterization Facility (College of Science and Engineering), which receives partial support from the NSF through the MRSEC program; and at LacCore: National Lacustrine Core Facility (College of Science and Engineering), which receives partial support from the NSF. We wish to thank the many people at these centers who helped us along the way: Gil Tostevin, Matt Edling, Samantha Porter, Colin McFadden, Bing Luo, Kristina Brady Shannon, and Amy Myrbo. Many thanks go to Edward Idarraga for his help with the figures, and we thank two anonymous reviewers for their helpful comments.

Keywords

  • FTIR microspectroscopy
  • Residue analysis
  • Residue degradation
  • SEM
  • Stone tools

Fingerprint Dive into the research topics of 'Documenting the degradation of animal-tissue residues on experimental stone tools: a multi-analytical approach'. Together they form a unique fingerprint.

Cite this