Dynamical effects on the core‐mantle boundary from depth‐dependent thermodynamical properties of the lower mantle

Shuxia Zhang, David A. Yuen

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

A common assumption in modelling dynamical processes in the lower mantle is that both the thermal expansivity and thermal conductivity are reasonably constant. Recent work from seismic equation of state leads to substantially higher values for the thermal conductivity and much lower thermal expansivity values in the deep mantle. The dynamical consequences of incorporating depth‐dependent thermodynamic properties on the thermal‐mechanical state of the lower mantle are examined with the spherical‐shell mean‐field equations. We find that the thermal structure of the seismically resolved anomalous zone at the base of the mantle (D”) is strongly influenced by these variable properties and, in particular, that the convective distortion of the core‐mantle boundary (CMB) is reduced with the decreasing thermal expansivity. Such a reduction of the dynamically induced topography from pure thermal convection would suggest that some other dynamical mechanism, must be operating at the CMB.

Original languageEnglish (US)
Pages (from-to)451-454
Number of pages4
JournalGeophysical Research Letters
Volume15
Issue number5
DOIs
StatePublished - May 1988

Fingerprint

Dive into the research topics of 'Dynamical effects on the core‐mantle boundary from depth‐dependent thermodynamical properties of the lower mantle'. Together they form a unique fingerprint.

Cite this