Effects of decreased respiratory frequency on ventilator-induced lung injury

John R. Hotchkiss, Lluis Blanch, Gaston Murias, Alexander B. Adams, Doug A. Olson, O. D. Wangensteen, Perry H. Leo, John J. Marini

Research output: Contribution to journalArticlepeer-review

154 Scopus citations

Abstract

To determine if decreased respiratory frequency (ventilatory rate) improves indices of lung damage, 17 sets of isolated, perfused rabbit lungs were ventilated with a peak static airway pressure of 30 cm H2O. All lungs were randomized to one of three frequency/peak pulmonary artery pressure combinations: F20P35 (n = 6): ventilatory frequency, 20 breaths/min, and peak pulmonary artery pressure, 35 mm Hg; F3P35 (n = 6), ventilatory frequency, 3 breaths/min, and peak pulmonary artery pressure of 35 mm Hg; or F20P20 (n = 5), ventilatory frequency, 20 breaths/min, and peak pulmonary artery pressure, 20 mm Hg. Mean airway pressure and tidal volume were matched between groups. Mean pulmonary artery pressure and vascular flow were matched between groups F20P35 and F3P35. The F20P35 group showed at least a 4.5-fold greater mean weight gain and a 3-fold greater mean incidence of perivascular hemorrhage than did the comparison groups, all p ≤ 0.05. F20P35 lungs also displayed more alveolar hemorrhage than did F20P20 lungs (p ≤ 0.05). We conclude that decreasing respiratory frequency can improve these indices of lung damage, and that limitation of peak pulmonary artery pressure and flow may diminish lung damage for a given ventilatory pattern.

Original languageEnglish (US)
Pages (from-to)463-468
Number of pages6
JournalAmerican journal of respiratory and critical care medicine
Volume161
Issue number2 I
DOIs
StatePublished - 2000

Fingerprint Dive into the research topics of 'Effects of decreased respiratory frequency on ventilator-induced lung injury'. Together they form a unique fingerprint.

Cite this