Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces

Volodymyr I. Kushch, Sofia G. Mogilevskaya, Henryk K. Stolarski, Steven L. Crouch

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

A complete solution has been obtained for periodic particulate nanocomposite with the unit cell containing a finite number of spherical particles with the Gurtin-Murdoch interfaces. For this purpose, the multipole expansion approach by Kushch et al. [Kushch, V.I.; Mogilevskaya, S.G.; Stolarski, H.K.; Crouch, S.L.; 2011. Elastic interaction of spherical nanoinhomogeneities with Gurtin-Murdoch type interfaces. J. Mech. Phys. Solids 59, 1702-1716] has been further developed and implemented in an efficient numerical algorithm. The method provides accurate evaluation of local fields and effective stiffness tensor with the interaction effects fully taken into account. The displacement vector within the matrix domain is found as a superposition of the vector periodic solutions of Lamé equation. By using local expansion of the total displacement and stress fields in terms of vector spherical harmonics associated with each particle, the interface conditions are fulfilled precisely. Analytical averaging of the local strain and stress fields in matrix domain yields an exact, closed form formula (in terms of expansion coefficients) for the effective elastic stiffness tensor of nanocomposite. Numerical results demonstrate that elastic stiffness and, especially, brittle strength of nanoheterogeneous materials can be substantially improved by an appropriate surface modification.

Original languageEnglish (US)
Pages (from-to)1141-1153
Number of pages13
JournalInternational Journal of Solids and Structures
Volume50
Issue number7-8
DOIs
StatePublished - Apr 2013

Bibliographical note

Funding Information:
VK gratefully acknowledges the MTS Professorship Grant from the University of Minnesota, Minneapolis, USA.

Keywords

  • Effective stiffness
  • Gurtin-Murdoch interface
  • Multipole expansion
  • Spherical inhomogeneity
  • Unit cell model

Fingerprint

Dive into the research topics of 'Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces'. Together they form a unique fingerprint.

Cite this